سبز نیوز

سبز نیوز

مطالب کاربردی گیاهان زینتی.گیاهان دارویی.کشت قارچ.کشت گلخانه ای.تراریوم و بونسای
سبز نیوز

سبز نیوز

مطالب کاربردی گیاهان زینتی.گیاهان دارویی.کشت قارچ.کشت گلخانه ای.تراریوم و بونسای

رزش و محاسبه کارایی مصرف آب گیاهان زراعی در چهار محصول استراتژیک


ارزش و محاسبه کارایی مصرف آب گیاهان زراعی در چهار محصول استراتژیک

 

چکیده :
چالشی بزرگ در بخش کشاورزی، تولید غذای بیشتر از آب کمتر است که می تواند با افزایش بهره وری آب گیاهان (CWP) بدست می آید. بر اساس مرور چندین منبع علمی همراه با نتایج تحقیقاتی که قدمت آنها بیش از 30 سال نیست، مشخص شد که دامنه ای برای CWP گندم، برنج ، پنبه و ذرت که قبلاً توسط FAO گزارش شده بود، وجود دارد. کلاً میانگین ارزش CWP اندازه گیری شده در هر واحد کاهش آب به ترتیب عبارتست از 09/1 ، 09/1، 65/0، 23/0 ، 80/1 برای گندم، برنج ، پنبه دانه ، پنبه (Lint) و ذرت. دامنه CWP بسیار گسترده است ( گندم ، 6/0 تا 7/1 ؛ برنج 6/0 تا 6/1 ؛ پنبه دانه 41/0 تا 95/0 ؛ پنبه (Lint) 14/0 تا 33/0 و ذرت 1/1 تا 7/2 ) و بنابراین فرصت های فوق العاده ای برای حفظ یا افزایش تولیدات کشاورزی با 20-40% منابع آبی کمتر را بدست می دهد . تنوع CWP را می توان به :
(1) آب و هوا
(2) مدیریت آب در آبیاری
(3) مدیریت خاک ( مواد معدنی ) نسبت داد.
کمبود فشار بخار آب با CWP رابطه معکوس دارد . کمبود فشار بخار ، همراه با عرض جغرافیایی ، کاهش می یابد و بنابراین نواحی مناسب برای کشاورزی با آبیاری مدبرانه ، در عرضهای جغرافیایی بالاتر قرار می گیرند . نتیجۀ بسیار مهم آنست که CWP ممکن است به طرز چشمگیری افزایش یابد اگر آبیاری کاهش و مخصوصاً کمبود آب زراعی مرتفع گردد.
لغات کلیدی : بهره وری آب زراعی ، کمبود آب ، گندم ، برنج ، پنبه و ذرت

1- مقدمه :
با افزایش سریع جمعیت جهان ، فشار بر منابع محدود آب شیرین ، افزایش می یابد . کشت آبی ، بزرگترین بخش مصرف کنندۀ آب است و با نیازهای متناقص دیگر بخشها مانند بخش های صنعتی و خانگی ، مواجه می شود. با جمعیت فزاینده و آب کمتری که برای تولیدات کشاورزی در دسترس است ، تضمین امنیت غذایی برای نسل های آینده ، مبهم است.
بخش کشاورزی با چالشهایی برای تولید بیش غذا با آب کمتر بواسطه افزایش بهره وری آب زراعی (CWP) مواجه است (Kijneetal .2003a) . CWP بالاتر ، هم از تولیدات با منابع آب کمتر یا از تولیدات بیشتر با منابع آب یکسان ناشی می شود و این بخاطر برخورداری مستقیم برای سایر استفاده کنندگان از منابع آب می باشد.
CWP معمولاً در منابع به کارآیی مصرف آب (WUE) منسوب است . اما در این بحث بعنوان عملکرد محصولات تجاری که عمدتاً تحت تاثیر تبخیر و تعرق می باشد، تعریف می گردد.
(1)
در اینجا Yact عملکرد واقعی محصول تجاری است و Etact میزان آب زراعتی است که بصورت تبخیر و تعرق مصرف می شود . هنگام بررسی این رابطه ، از نقطه نظرفیزیکی ، باید صرفاً تعرق را بررسی کرد.
جدا سازی فرآیند تبخیر- تعرق به تبخیر و تعرق در آزمایشات مزرعه ای ، مشکل است و بنابراین راه حل عملی نیست . علاوه بر این ،تبخیر ، مولفه ای است که همیشه به رشد اختصاصی محصول ، زمین زیر کشت و شیوه های مدیریت آب وابسته است و این آب مدت زیادی برای سایر مصرف کنندگان یا استفاده مجدد ، در دسترس نیست . تا زمانیکه تبخیر و تعرق بر مبنای جذب آب از ریشه، جذب از طریق بارش باران ، آبیاری و خاصیت مویینگی باشد در هماهنگی هستند. علی رغم اینکه CWP عامل کلیدی در برنامه ریزی دراز مدت و استراتژیک منابع آب است ، عناصر عمده و ممکن از نظر عملی ، به ندرت شناخته شده اند. کاملترین کار بین المللی ، خیلی پیش تر توسط Doorenbos و Kassam (1979) که فاکتورهای واکنش عملکرد گیاه زراعی (ky) برای نسبت ETact به Yact را استفاده کردند ، گرد آوری شد. مشکل موجود در روش کار این است که بایستی عملکرد ماکزیمم مشخص شود , که با روشهای کشت و زرع موجود در تضاد است.
(2003b)Kijnetal ، استراتژیهای متعددی برای افزایش CWP از طریق یکسان سازی ( هماهنگ کردن ) اصلاح نژاد و مدیریت بهتر منابع در سطح گیاه ، سطح مزرعه و سطح agro-climatic ارائه دادند . مثالهایی از راهها و شیوه های انجام شده عبارتست از: افزایش شاخص برداشت ، بهبود مقاومت به خشکی و شوری ( سطح گیاه ), بکار بردن کم آبیاری ، تنظیم تاریخ های کاشت و شخم حداقل برای کاهش تبخیر و افزایش نفوذ ( سطح مزرعه ) ، استفاده مجدد آب و آنالیز فضایی برای تولید ماکزیمم و ETact مینیمم ( سطح agro-ecological).
با افزایش تحقیقات در زمینۀ زراعت محصولات مختلف و شیوه های بهبود یافته مدیریت زمین و آب ، CWP در طی سالها ، افزایش یافته است . بعنوان مثال ، Grismer (2002) تحقیقی بر روی ارزش CWP برای پنبه آبیاری شده در آریزونا و کالیفرنیا انجام داد و نتیجه گرفت که دامنه CWP از دامنه ای که توسط Doorenbos و Kassam (1979) ارائه شده بود ، در بسیاری موارد فراتر می رود. در تولید برنج ، CWP در اثر دوره های کوتاهتر رشد (TUong, 1999) و در اثر افزایش نسبت فتوسنتز به تعرق (Pengetal , 1998) افزایش دارد . این امیدوار کننده است که CWP برای سایر محصولات به صورت بسیار معنی داری تغییر کرده است . تحقیقات متنوعی ، رابطه بین کاربرد آب و عملکرد را در محصولات و غیره در شرایط مشخص با شیوه های مدیریت آبی و کشت ویژه بررسی کرده اند . بحث حاضر ، نتایج آزمایشات مزرعه ای که در چند سال اخیر اجرا شده است را جمع آوری نموده و سعی دارد که دامنه ای قابل قبول برای چهار محصول عمده اصلی :
گندم (Triticum aestivum L.) ، برنج (oryza sativa L.) ، پنبه (Gossypium spp) و ذرت (zea mays L.) را پیدا کند.

2- پایگاه داده ها و کاربرد اصطلاحات
پایگاه داده ها توسط اطلاعات CWP جمع آوری شده از آزمایشات مزرعه ای گزارش شده در مقالات بین المللی ، صورتجلسات همایش ها و گزارشات فنی حاصل می شود . اکثر آزمایشات مزرعه ای ، در ایستگاههای آزمایشی تحت شرایط متنوع رشد ، شامل تنوع در آب و هوا ، آبیاری ، حاصلخیزی ، خاکها ، شیوه های کشت و غیره اجرا شده است . از آنجا که هدف این بحث ، یافتن دامنه های قابل قبول CWP طبق شرایط مدیریت کشاورزی است ، تمام ارزشهای CWP اندازه گیری شده در آزمایشات در پایگاه داده گنجانده شده است . برای آنکه داده ها در پایگاه گنجانده شوند ، نتایج آزمایشات بایستی به طور مختصر تبخیر – تعرق واقعی اندازه گیری شده فصلی (ETact) و روشهای بکار رفته در تعیین (ETpot) و عملکرد محصول Yact را ارائه دهند. اغلب مطالعات، ETact را اندازه گیری نمی کنند و بجای آن تبخیر – تعرق بالقوه (ETpot) را بکار می برند.این مطالعات معمولاً در پایگاه داده ها ثبت نمی شود و به این دلیل ، در این بحث استفاده نمی شود. نتایج حاصل از آزمایشات گلخانه ای ، آزمایشات گلدانی و مدلهای شبیه سازی بالانس آب ، در نظر گرفته نشد. همچنین آزمایشاتی که بر مبنای روشهای تبخیر – تعرق (Allen et al , 1998) بود ، در این بررسی ، مناسب تشخیص داده نشد؛ در واقع تبخیر – تعرق اندازه گیری نشد, اما تخمین زده شد. لیزیمتر یک ابزار مناسب و متداول در تعیین ETact است. روشهای متوازن کردن آب خاک که محتوی آب خاک را در هنگام فصل رشد از طریق تعیین رطوبت خاک تعیین می کند یا از طریق دستگاههای شکافت هسته ( کاوش هسته ای ) یاتوسط روش (TDR) ,
Time – domain – reflectometry اغلب کاربرد دارد . تکنیکهای اندازه گیری میکروهواشناسی ، مثل ضریب Bowen و روشهای eddy – correlation اغلب در اینگونه مطالعات معمول نیست ( آنها عمدتاً برای مطالعات میکروهواشناسی و اقلیمی کاربرد دارد و گزارشی از نقش آنها در عملکرد محصولات گزارش نشده است ) . عملکرد ، بعنوان بخش تجاری تولید بیوماس نهایی در سطح زمین تعیین می شود ، برای گندم ، ذرت و برنج ، مجموع عملکرد دانه و برای پنبه مجموع عملکرد Lint و یا مجموع عملکرد بذر آن بررسی شده است .
متاسفانه منابع بسیار کمی محتوی رطوبتی را که در آن عملکرد اندازه گیری شده باشد را ارائه می دهند ، که بصورت مشخصی ، نشانۀ وجود خطا در نتایج نهایی است . siddique et al (1990) ، CWP واریته های قدیمی و جدید گندم را بررسی کرد و نشان داد که واریته های قدیمی تر ، بعلت شاخص برداشت پایین تر ، ارزش CWP کمتری دارند.
در واقع تفاوت معنی داری در مجموع بیوماس تولیدی بین واریته های قدیمی و جدید گندم پیدا کرد. بعنوان مثال در تولید برنج، CWP بعلت تکامل در انواع گیاهان جدید با ضریب بالای نسبت فتوسنتز به تعرق و بعلت کاهش دورۀ رشد ، افزایش یافت Peng et al . 1998; Tung , 1999) . بدین منظور از نتایج آزمایشات خیلی قدیمی به منظور کم کردن تاثیر واریته های قدیمی تر با شاخص برداشت پایین تر و دورۀ رشد بالاتر استفاده نمی شود . در واقع نتایج آزمایشات ، برای پایگاه داده های گیاهان سازماندهی شدند که شامل طول و عرض جغرافیایی کشور منطقه ETact و Yact تولید بیوماس ، شاخص برداشت ، سالهای آزمایشات و منابع می شوند . برخی منابع که به آن استفاده شده ، نتایج هر یک از آزمایشات مزرعه ای را ارائه می دهند ، در حالی که سایر آنها میانگین ارائه می کنند ، در واقع استراتژی مدیریتی اعمال شده در آن سال آزمایش را بیان می کند.
در واقع هر نتیجه ای چه بعنوان میانگین آزمایشات یا یک نتیجه مجزا برای آزمایش گزارش شده باشد، در پایگاه داده ها ، بعنوان یک نتیجه ارزشمند در نظر گرفته می شود.

3- نتایج
1-3- پایگاه داده ها

محتوای پایگاه داده ها بصورت اجمالی ، در جدول (1) نشان داده شده است . اما در ضمیمۀ A تمام نتایج را با محصول و منبع نشان می دهد . در این مطالعه 84 مقاله معتبر از لحاظ علمی مد نظر قرار گرفت. برای گندم ، 28 منبع اطلاعاتی از 13 کشور در 5 قاره آنالیز شد . داده ها در مورد برنج با 13 منبع معتبر در 8 کشور بررسی شد. مطالعات بسیاری روی تولید برنج و استفاده آب ، برای تمرکز بر روی میزان آب ورودی به سیستم وجود دارد ، در حالیکه تعداد کمی از مطالعات ، تبخیر – تعرق واقعی (ETact) را بررسی می کنند. در مورد پنبه ، 16 آزمایش انجام شده در 9 کشور متفاوت و برای ذرت 27 منبع در 10 کشور مختلف در 4 قاره بررسی گردید. بررسی روی CWP ذرت ، به طور عمده در آمریکا ( 9 منبع ) و چین ( 7 منبع ) متمرکز شده است . اکثر منابع علمی در این مورد به زبانهای فرانسوی و اسپانیولی می باشد. بیشترین منابع چاپ شده که حداقل نیازهای اطلاعاتی را در مورد این 4 محصول

ارائه دهند در قاره های آفریقا ، آمریکای لاتین و اروپا یافت می شوند. متاسفانه بسیاری از منابع چاپ شده ، روی تعیین کارآیی آب محصولات یا عملکرد محصولات متمرکز هستند ، در حالیکه بقیه ، صرفاً کاربرد آب آبیاری را بررسی می کنند.

2-3- بهره وری آب زراعی (CWP)
شکل d-a1 : هیستوگرامهای توزیع فراوانی گندم، برنج، پنبه و ذرت را نشان می دهد . به منظور صرف نظر از افزایش افراطی ارزشها ، دامنۀ CWP توسط گرفتن ملاکهای 5 و 95 توزیع فراوانی فزاینده ، تخمین زده شد . نتایج در جدول 2 ارائه شده اند . گندم ، بیشترین تعداد نقاط تحقیقاتی را دارد (412 = n) و دامنه CWP آن بین 6/0 و 7/1 است.
Kassam , Doorenbos (1979) دامنۀ پایین تری از 8/0 تا 0/1 را ارائه می دهند.

حداکثر ارزش، توسط (1999) . Jintet al در چین پیدا شد: استفاده از کود دامی منجر به تولید بیشتر شد و مالچ کاه ، آب خاک و وضعیت درجه حرارت خاک را بهبود بخشید. CWP برای آزمایش با مالچ کاه ، 67/2 بود و برای ترکیب مالچ و کود ، 41/2 بود. در فصل زمستان میزان ETact به 268 و 236 تعدیل شد و به ترتیب عملکردها بالا رفت و بین 7150 و 5707 بود. ( شکل 2a) . CWP برنج ، دامنه ای بین 6/0 و 6/1 دارد ( شکل 1b) . TUong و Bouman (2003) دامنه مشابهی از 4/0 تا 6/1 برای زمین های برنج ارائه کردند. ارزشی ماکزیمم CWP از 1/1 برای برنج، که توسط Doobrenbos و Kassam (1979) ( جدول 2) ارائه شد، به فراتر از 6 در 13 منبع عملی رسید. دامنه CWP برنج ، مشابه گندم است؛ شکل توزیع فراوانی در برنج، به همواری ( ملایمت) گندم نیست زیرا نقاط کمتری موجود است. ارزش ماکزیمم آن به بالاتر از 20/2 رسید و در چین بر روی زمین های برنج با تناوب خشکی و رطوبت ، اندازه گیری شد ( 2001 ، Dong etal) . عملکرد دانه برنج بالای 10 یکی از بالاترین موارد اندازه گیری بود. در حالیکه Etact آن به سمت پایین تر با mm465 بود ( شکل2.b).
ارزش CWP پنبه برای عملکرد Lint آن ، از 14/0 تا 33/0 گسترده است . ارزش ماکزیمم آن فراتر از 35/0 است و توسط Jin etal (1999) و Saranga etal (1998) به ترتیب در چین و اسرائیل ، ارائه شد.
Jin etal(1999)؛ آزمایشاتی انجام داد که در آن پنبه در شیارهایی کاشته شد و خاک توسط پلاستیک سوراخدار بمنظور نفوذ به پهلوی گیاه و کاهش تبخیر خاک و بهبود وضعیت آب خاک ناحیۀ ریشه، پوشانده شد.
Saranga etal (1998) ؛ مقدار میانگین عملکرد Lint را در یک آزمایش مزرعه ای با آبیاری محدود ، 1300 ارزیابی کردند. در حالیکه میزان ETact فصلی پایین در mm390 اندازه گیری شد
Howel etal (1984)؛ مقدار مشابهی را ( 33/0) در یک آزمایش با فراوانی بالا آبیاری قطره ای و کاهش مدیریت کم آبیاری برای ردیف های کم عرض پنبه در کالیفرنیای آمریکا اندازه گیری کرد . عملکرد Lint بیشتر از 2000 بود. تا زمانیکه ETact فصلی نسبتاً پایین (mm617)بود. دامنه برای عملکرد پنبه دانه با 41/0-95/0 ، بیشتر از دامنه ای بود که در FA033 ارائه شده است . ( 6/0-4/0) . در آرژانتین مقدار ماکزیمم ، فراتر از 0/1 در آزمایشاتی که آب در طی دوره های بحرانی مثل قبل از دانه بندی و گلدهی بکار رفت، اندازه گیری شد ( 1999 ، Prieto and Angueira) .
عملکرد پنبه دانه، در قیاس با سایر عوامل تغییر نکرد، تا هنگامی که ETact پایین تر بود. (mm495-447 ، شکل 2c).


در نهایت ، مقدار CWP ذرت در دامنۀ 22/0 تا ماکزیمم 99/3 اندازه گیری شد ( شکل 1d). که دامنه 63/1 وسیعی از تنوع را نشان می دهد ( 38/0 = CV) . در 67 درصد مقالات چاپ شده ، مقدار ماکزیمم در منابع ، از مقدار که توسط FA033 تعیین شده فراتر می رود.

 دامنۀ CWP از 1/1 تا 7/2 برای ذرت, ( گیاه C4) , به طور چشمگیری بالاتر از گندم ، برنج و پنبه می باشد که جزء گیاهان C3 اند. مقدار ماکزیمم توسط (b2000) . Kangetal در آزمایشات تلفیق آبیاری متناوب شیارها و کم آبیاری تحت شرایط کشور چین بدست آمد . مقدار کم آب آبیاری به طور متناوب به یکی از دو شیار مجاور می رسد. Etact با mm226 بسیار پایین بود. در حالیکه عملکرد دانه در حدود 9058 است.

4- بحث
در شکل 2a-d ، عملکرد چهار محصول ، در خلاف جهت Etact برای هر محصولی ، رسم می شود. تمام چهار نمودار ، نشان می دهد که رابطه Yact – Etact به سادگی آنچه اغلب به نظر می رسد نیست: مقدار مجذور r- پایین است؛ پنبه Lint بیشترین مجذوز ( 39/0= ) را داشت ، سپس گندم ( 35/0 = ) ، ذرت ( 33/0 = ) ، پنبه دانه (19/0= ) و برنج (09/0= ).
نتیجه ای که در اینجا گرفته می شود آنست که تابع Yact (ETact) صرفاً به صورت موضعی موثر است و نمی تواند در برنامه ریزی در مقیاس کلان مدیریت آب کشاورزی استفاده شود. محدودۀ وسیعی در مقدار CWP برای این چهار محصول ، موجود است ( جدول 2) ، که بواسطۀ فاکتورهای زیادی که در رابطۀ آب –خاک گیاه موثرند، ایجاد می شود. در این بررسی برای شرح مناسب از محدوده های گستردۀ CWP ، فقط سه موضوع ، اینجا بحث می شود : عوامل اقلیمی ( آب و هوا ) مدیریت آب آبیاری و مدیریت خاک.


Dewit (1958) از اولین افرادی بود که رابطۀ فتوسنتز – تعرق را تشریح کرد. Bierhuizen و slayter (1965) تاثیر پارامترهای جوی را بر روی این رابطه بررسی کردند و دریافتند که به طور نسبی ، رابطۀ معکوسی ( بازبینی و تایید توسط Tannr و Sinclair در 1983 بین کمبود فشار بخار در هوا و CWP وجود دارد. نتایج مشابهی توسط Stanhill (1960) بر روی مراتعی که در عرض ها جغرافیایی مختلف هستند ، پیدا شد. کمبود فشار بخار ، بطور کلی هنگامی که از خط استوا دور می شویم، کاهش می یابد، انتظار می رود که با افزایش عرض جغرافیایی ، مقدار CWP نیز افزایش یابد. این مسئله برای مجموعۀ اطلاعات متداول ، تست شده است. برای هر مکان تحقیقاتی ( که بعنوان منطقه جغرافیایی خاص تعریف شده است) ، ماکزیمم CWP هر محصول ، بر خلاف مقدار عرض جغرافیایی مکان آزمایش رسم می شود.
در واقع مقدار ماکزیمم با شرایط رشدی گیاه، مدیریت آب آبیاری و مدیریت حاصلخیزی خاک در هر منطقه مشخص می شود. نتایجی که در شکل 3 نشان داده شده است، اثبات می کند که CWP با کم شدن عرض جغرافیایی ، کاهش می یابد. همچنین نشان می دهد که بیشترین مقدار CWP بین عرضهای جغرافیایی 30 و 40 درجه ، جایی که تغییر فاکتور 3-2 در CWP گندم ، برنج و ذرت ، نسبت به عرضهای 10 و 20 درجه شناسایی شده وجود دارد.
مثالهای متعددی در مقالات علمی ، تاثیر مدیریت آب آبیاری را بر CWP توصیف کرده اند ( بعنوان مثال : oktemet al . 2003 ؛ zhang etal ; 1998 ؛ Yazar etal ; 2002 a؛ Kang etal ; 2000a ؛ sharma etal ; 1990؛ تاثیر شیوه های کم آبیاری به میزان محدودی روی عملکرد و پیدا کردن مقدار CWP بهینه بررسی شده است . در شکل 4a و 4b ، CWP گندم و ذرت بر خلاف مقدار خالص آب آبیاری که در آزمایشات متنوعی بکار رفته است، ترسیم می شود . مشخص شد که بدون ابیاری CWP در سیستمهای وابسته به نزولات آسمانی ( دیم ) ، پایین است. اما هنگامیکه آب آبیاری اندکی به سیستم اضافه شود CWP به سرعت افزایش می یابد . بر اساس اطلاعات داده ها، میزان بهینه CWP تقریباً در حدود 150 و 280 mm آب آبیاری بکار رفته به ترتیب برای گندم و ذرت بدست می آید. ( بعلاوه بارندگی ) . شکل 4 نشان می دهد که چگونه CWP توامان می توان با ذخیره آب و کاهش آبیاری ، افزایش یابد. حداکثر بهره وری آب گاهش ممکن است با خواسته های کشاورز که هدفش بهره وری حداکثر زمین و سود دهی اقتصادی است ، منطبق و هماهنگ نباشد.

این مسئله نیازمند یک تغییر عظیم در علم آبیاری ، مدیریت آب آبیاری و توزیع آب حوضچه هاست، برای حرکت از استراتژی حداکثر آبیاری – حداکثر محصول به سوی سیاست ( آبیاری کمتر – CWP بالاتر ) در کنار مقدار کلی آب آبیاری بکار رفته ، تنظیم زمانبندی آبیاری نیز عاملی مهم است . تنش آب در طی مراحل مختلف رشد CWP را به طرق مختلفی تحت تاثیر قرار می دهد ؛ در ازمایشاتی که روی پنبه انجام شد، مشخص گردید که تنش آب هنگام رشد رویشی و دورۀ شکل گیری غوزه ها بر کاهش مقدار CWP موثر است . تنش ملایم در هنگام تشکیل محصول بر میزان عملکرد موثر نیست اما رشد رویشی گیاه را کاهش می دهد و بنابراین ممکن است، CWP را بهبود بخشد. (Prieto and Angueira , 1999)
ارتباط آبیاری و CWP در برنج مشابه آنچه که در گندم و ذرت یافت می شود ، نیست. در کشت برنج ، بجای آبگیری مداوم و رایج سایر استراتژیهای مدیریت آب ، مانند مرطوب و خشک کردن متناوب ( آبیاری تناوبی ) و خاک زراعی اشباع ، بررسی شدند. آنالیز آزمایشات مرطوب و خشک کردن متناوب در هندوستان توسط ، 1990 ، mishra etal نشان داد که اگر چه آب آبیاری ذخیره می شود. بهبود معنی دار و چشمگیری در CWP بین 8/0 و 99/0 (n,24)؛ برای تحقیق بخصوص در هند، ETact کاهش نیافت زیرا آبیاری انجام شده، مازاد بر ETact بود.
(2001)Dong etal؛ به نتایج مشابهی دست یافت و پی برد که تفاوت زیادی بین آبگیری مداوم و آزمایشات مرطوب و خشک کردن متناوب وجود ندارد ؛ میانگین 10 ساله ETact و CWP مقادیر 590 و 591 mm و 49/1 و 58/1 به ترتیب برای آبگیری مداوم و آزمایشات آبیاری تناوبی محاسبه شد. از سوی دیگر (20039 : shei etal در کار با لیزیمتر ، مقدار بیشتری از CWP را برای آزمایشات آبیاری تناوبی اندازه گیری کرد . ( 0/2) در مقایسه با ابگیری مداوم ( 6/1) در حالیکه ، عملکردها فقط 200 کمتر بود. علاوه بر این ، ETact در آزمایشات تناوبی (mm347) و در مقایسه با آبگیری مداوم ، 22 درصد کمتر بود . برای توضیح مطلب ( 1996) seckler ذخیرۀ آب ( خشک ) و ( مرطوب ) از هم متمایز ساخت . کاهش در ETcat ذخیرۀ مرطوب بواسطۀ تبخیر – تعرق آب بوده و قابلیت استفاده در آینده را ندارد . از طرف دیگر، ذخیرۀ آب آبیاری همانا ذخیرۀ خشک است ، زیرا آب ممکن است در حوضچه ها برای استفاده مجدد ، بازیافت شود ( قبل از آلوده شدن ) . همانطور که توسط نتایج بدست آمده توسط ( 1990) . mishra etal و (2001) و Dong etal نشان داده شد، آبیاری تناوبی ، صرفاً یک مثال ذخیره آب خشک است زیرا ETact به سختی توسط کاهش ذخایر ، تحت تاثیر قرار می گیرد.
(2001)؛ Hatfield etal ؛ تاثیرات مدیریت خاک را بر CWP از طریق اصلاح سطح خاک مانند شخم و مالچ باشی و بواسطه بهبود مواد معدنی خاک از طریق اضافه کردن نیتروژن و یا فسفات بررسی کردند. اصلاح سطح خاک ، روند ETact را تغییر می دهد و اغلب مشخص شده که رابطۀ مثبتی با CWP دارد. مواد معدنی ، بصورت غیر مستقیم برکارآیی فیزیولوژیکی گیاه موثر است . در شکل 5 مقدار نیتروژن بر خلاف CWP گندم طی تحقیقات در نیجریه ، سوریه و اروگوئه ترسیم شده است.
CWP هنگامی که نیتروژن بکار گرفته شد و به میزان بهینه در مقدار تقریبی 50 رسید، افزایش یافت.
از طرف دیگر (1998) . Corbeels etal و (1996) Fernandez etal تفاوت معنی داری را هنگامی که از نیتروژن تثبیت شده استفاده گردید، اندازه گیری نکردند . ترکیب مواد معدنی و سطوح آبیاری ، بسیار معمولی بررسی شدند ( بعنوان مثال ؛ Li etal ; 2001؛ Pandey etal ; 2001؛ oweis etal ; 2000؛ zimaszalokine and szaloki ; 2002) . مقدار بهینه برای میزان عناصر معدنی و کاربرد آب آبیاری می تواند در CWP ماکزیمم یافت شود.

5- جمع بندی
محدوده CWP برای چهار محصول مورد بررسی به اندازه ای که توسط CV بالا بین 28 و 40 درصد نشان داده شد، وسیع است و در واقع یک رابطه منطقی بین ETact و عملکرد گیاه برقرار کرده است ( 39/0 -09/0 = ).
این تنوع ، عمدتاً با : (1) اقلیم آب و هوا ؛ (2) مدیریت آب آبیاری ؛ (3) مدیریت ( حاصلخیزی ) خاک مرتبط است ، با این وجود ، متغیرهای توصیفی ، غالبند . ناحیۀ آب و هوایی بین عرضهای جغرافیایی 30 و 40 درجه بعلت CWP بالاتر و کمبود فشار بخار کمتر مناسب تشخیص داده شده است . در نواحی با خاکهای کم بازده ، استفاده از حاصلخیز کننده های خاک ، امکان بهبود در CWP را افزایش می دهد . حداکثر افزایش در CWP با کاربرد مقادیر کم نیتروژت همراه است.
روشهای کم آبیاری برای بهبود CWP به کار رفته است و گاهی تا بیش از 200 درصد تاثیر دارد . گیاهان زمانیکه در حضور آب تحت تاثیر تنش قرار می گیرند ، کارآیی بالاتری نشان می دهند . بنابراین با تردید نتیجه گیری می شود که در رسیدن به CWP بهینه در مناطق کم آب ، عاقلانه است که گندم و ذرت با آب کمتر آبیاری شود، همانطور که برای دستیابی به عملکردهای ماکزیمم بیان شد.
در کشت برنج ، افزایش CWP هنگام کاربرد آب کمتر ، نمی تواند توسط اطلاعات داده ها ، اثبات شود ؛ در خلال بسیاری از آزمایشات مرطوب و خشک کردن متناوب و آبگیری مداوم ، تفاوت چشمگیری ( معنی دار ) در CWP وجود نداشت . ذخیرۀ آب در برنج ، ( ذخیره خشک ) است ، زیرا کاربرد مصرفی تحت تاثیر قرار نگرفته یا اندکی متاثر می شود.
محدودۀ وسیعی در CWP موید آنست که روشهای جدید در مدیریت آب پشرفت کرده ؛ زیرا که تولیدات کشاورزی با منابع آبی در حدود 20-40 درصد به پایین همچنان با حفظ و حتی افزایش عملکردها همراه است

زهکشی


 به زبان ساده میتوان گفت زهکشی خارج کردن آب و املاح اضافی از بستر و یا عمق خاک است .در کشاورزی هدف از زهکشی ، بیشتر فراهم کردن محیطی مناسب برای رشد ریشه گیاه است ( از نظر تهویه و شوری)  در تعریفی جامع تر میتوان گفت زهکشی به معنی خارج شدن طبیعی یا مصنوعی آب مازاد از یک منطقه بوده و از مباحث بنیادی هیدرولوژی مهندسی است .  

اهمیت زهکشی : هر وقت زمین را آبیاری میکنیم سطح آب سفره زیرزمینی بالا می آید و امر تهویه در منطقه ریشه با مشکل مواجه میشود ضمنا تجمع املاح نیز باعث ایجاد شوری در خاک میگردد .

 مسائلی که به خاطر عدم تهویه در خاک بوجود می آیند :

 

1-کاهش تنفس ریشه و موجودات زنده

2-کاهش نفوذپذیری و حرکت کند املاح در خاک

3- تشکیل ترکیبات سمی در خاک ( انجام عملیات احیا به جای اکسیداسیون)

4-کاهش تولید مواد غذایی در خاک

 بعضی از زمینها بصورت طبیعی زهکشی شده اند ( به علت وجود شیب و با کمک نیروی ثقل )و در بعضی از موارد زهکشی بصورت مصنوعی انجام میشود مانند کانال یا لوله .

نگاهی به مقایسه درصد مصرف آب در کشورهای مختلف جهان میتواند اهمیت زهکشی را برای ما نمایان تر سازد.


 

تاریخچه زهکشی

 زهکشی کشاورزی،‌ بنا به عقیده سازمان خواربار و کشاورزی جهانی، نه هزار سال پیش در بین‌النهرین آغاز شد. در آن هنگام لوله به کار برده نمی‌شده بلکه به احتمال زیاد از سنگ و سنگ‌ریزه و شاخ و برگ گیاهان بهره‌گیری می‌شد. اولین لوله‌های زهکشی حدود چهار هزار سال قدمت دارند. در اروپا، اولین زهکشی زیرزمینی حدود دو هزار سال پیش نصب شده‌است.  

در کتابی که در حدود سه هزار سال پیش در چین نگاشته شده، نقشه‌هایی از سیستم زهکشی مشاهده می‌شود. هرودت،‌ در حدود 2400 سال قبل،‌اشاره‌هایی به کاربرد زهکشی در درّه نیل دارد.

 اولین مدارک ثبت شده زهکشی بوسیله شخصی به نام کاتو در دو سال ق . م .ثبت شده است .  یک سال ق. م . شخصی به نام پلینگ، سیستم زهکشی خندقی را پیشنهاد کرد که از ریگ و شاخ و برگ پر شده بود و به عنوان یک زهکش زیرزمینی عمل میکرد.البته قنات که ابداع آن در حدود سه هزار سال قبل توسط ایرانیان صورت گرفته است یکی از قدیمیترین سیتمهای زهکشی محسوب میشود و در اینجا بد نیست اشاره ای نیز به سیستم زهکشی تخت جمشید کرد که این سیستم در نوع خود در جهان از نظر تاریخی بی نظیر است .  زهکشی مدتی در جهان به فراموشی سپرده شد تا اینکه در 1544 میلادی در انگلستان دوباره زندگی جدیدی یافت. اولین تنبوشه ساز سفالی در 1840 در انگلستان به کار گرفته شد. در امریکا زهکشی لوله‌ای در دو سدة پیش آغاز شد..  

زهکشی در ایران :

احداث اولین شبکه‌های نوین آبیاری و زهکشی در دهه 1310 در جنوب کشور صورت گرفت و اولین زهکش روباز با استفاده از ماشین در حوالی سال 1335 در شاوور خوزستان ساخته شد. در سال‌های 1341 و 1342 اولین شبکه زهکشی زیرزمینی با استفاده از لوله‌های سفالی در دانشکده کشاورزی دانشگاه جندی شاپور (شهید چمران) واقع در ملّاثانی (رامین) اهواز در وسعتی حدود 500 هکتار با نیروی کارگری به اجرا در آمد. در همین سال‌ها بود که اولین ماشین زهکشی وارد کشور شد. اولین طرح بزرگ زهکشی به وسعت 11000 هکتار در هفت تپه به اجرا درآمد. سپس زهکشی اراضی شرکت کشت و صنعت کارون و همزمان با آن زهکشی اراضی آبخور سد وشمگیر در گرگان آغاز شد. دشت‌های مغان، دالکی در بوشهر،‌ زابل، میان‌آب، بهبهان، طرح‌های هفت‌گانه توسعه نیشکر در خوزستان از جمله طرح‌های بزرگ دیگری هستند که اجرای آنها به اتمام رسیده است.

 اهداف زهکشی :  

1-جمع آوری و خارج کردن املاح اضافی 2-جمع آوری آبهای سطحی ناشی از روان آب ،که این مساله بیشتر در مناطق مرطوب کاربرد دارد و لازم به ذکر است در مناطق مرطوب کانالهای سطحی زهکش را بصورت عریض میسازند.3-ایجاد تهویه مناسب در محیط خاک ریشه 4-بهبود کارایی ماشین آلات ( مخصوصا کشاورزی ) 5 -استحکام بخشیدن به ساختمان خاک و ...

 فواید زهکشی :  

از فواید زهکشی میتوان جلوگیری از وقوع سیل ، به زیر کشت بردن اراضی جدید، زودتر گرم شدن خاک در فصل بهار ، شروع زودتر عملیات کشاورزی ، کیفیت و کمیت بهتر محصولات ، شستشوی املاح اضافی و بهتر شدن وضعیت مسائل بهداشتی را نام برد .در تعریفی جامع تر از این فواید میتوان گفت فواید زهکشی به شرح زیر است .

 1-کنترل و جلوگیری از ماندابی شدن ، ۲.کنترل و جلوگیری از شورشدن اراضی ، ۳.کنترل فرسایش ، ۴.کنترل سیل ، ۵.حفاظت محیط زیست ، ۶.سلامت عمومی و بهداشت ، ۷.جلوگیری از راکد شدن آب و ایجاد بوی تعفن و نامطبوع در محیط مزرعه ،۸.حفاظت از ابنیه و تاسیسات عمومی و ۹.توسعه روستایی و امنیت غذایی  

معایب زهکشی :

 1-شستن و خروج بعضی از املاح مفید خاک به همراه املاح مضر 2- هزینه بر بودن مطالعه و اجرا 3-ازبین بردن اکوسیستم طبیعی منطقه به علت کم کردن رطوبت و نتیجتا غیر قابل زیست شدن آن منطقه برای بعضی از موجودات مانند پرندگان به علت کم شدن رطوبت 4- ازبین رفتن علفهای طبیعی منطقه 5- اشغال بخشی از زمین زراعی و تقسیم زمین به قطعات جداگانه 6- افزایش خطر آتش سوزی  

منشاء زه آب:  

 

 زه آب ممکن است ناشی از بارندگی ، ذوب برف ، آب آبیاری ، جریانات سطحی و نشت زیر سطحی از اراضی مجاور ، سریز و طغیان رودخانه ها، نشت از کانالهای آبیاری و صعود سطح ایستابی باشد.

 در نواحی مرطوب بارندگی های مداوم ؛ در نواحی سردسیرتغذیه ناشی از ذوب برف و در نواحی سردسیر تغذیه ناشی از ذوب برف و در نواحی خشک ونیمه خشک ، آبیاری طغیانهای فصلی ، آبشویی اراضی و صعود سطح ایستابی ، منشآ اصلی زه آبها به دشمار میروند.با توجه به موارد ذکر شده ، عواملی چون روش آبیاری ( ثقلی - تحت فشار)، فیزیوگرافی (توپوگرافی، شکل زمین)، شبکه آبراهه ، عمق لایه نفوذ ناپذیر ،لایه بندی خاک، ویژگیهای هیدرودینامیکی خاک (نفوذ پذیری سطحی ، هدایت هیدرولیکی) و خصوصیات شیمیایی خاک( شوری ،کسر آبشویی ، قلیائیت)بطور غیر مستقیم بر زهدار شدن اراضی موثرند.  

انواع سیستم های زهکشی :

 از دیدگاههای متفاوت ، زهکشها را به انواع مختلفی تقسیم بندی می نمایند .در صورتی که نوع زه آب از نظر سطحی یا زیر سطحی مورد توجه باشد ، زهکشها را به دو دسته زهکشهای سطحی و زیر سطحی تقسیم بندی می نمایند . در شرایطی که سازه های زهکشی مورد توجه باشند ،زهکشها را به دو دسته زهکشهای روباز و زهکشهای لوله ای(زیر زمینی) تقسیم بندی می نمایند که در مورد اخیر زهکشی قائم ( چاه زهکش )را نیز در بر میگیرد. توجه به این نکته ضروری است که زهکشهای روباز علاوه بر زه آبهای سطحی ،پروفیل خاک را نیز زهکشی می نمایند.هر سیستم زهکشی دارای اجزایی است که بسته به نوع سیستم ،ابنیه ابی متفاوتی را شامل میشود.  

سیستم زهکشی سطحی : برای مناطق مرطوب بیشترین کاربرد را دارد و به خاطر اینکه بارندگی در سطح زمین تجمع پیدا میکند ، این سیستم بصورت کانالهای عریض و کم عمق( شبکه نهرهای قابل گذر) بکار میرود بطوریکه ماشین آلات هم میتوانند براحتی از روی آن حرکت کنند .

 

 سیستم زهکشی زیرزمینی: بصورت کانال روباز عمیق تا عمق حدود 2 متر و یا لوله گذاری زیرزمینی است . زهکشی زیر زمینی بصورت عمودی نیز میتواند باشد ( حفر چاه )  لوله های زهکش زیر زمینی بصورت قطعه قطعه می باشند که یا بصورت ساده است و یا بصورت نرو مادگی .  

انواع زهکش:

 

1-روباز  2- لوله ای  

 )  Mole drian3-لانه موشی (  4-عمودی ( چاه ) 5-زهکش حائل  

زهکش روباز : کانال با مقطع معمولا ذوذنقه ای شکلی است .

 

 درکانال زهکشی به مراتب بیشتر از کانال آبیاری است .free board

 نکته : کانال زهکشی در گودی و کانال آبیاری در ارتفاع است .  

                                                  زهکش های لوله ای :

 

              -

 

 i-l--

 

 این زهکشها در سه نوع یافت میشوند :

  الف : تن بوشه ای ( سفالی ) ب: پلاستیکی  پ: سیمانی   ، این لوله ها با قطرهای مختلفی تولید میشوند و معمولا روی لوله مشبک است .  

لوله های سفالی معمولا در قطر های 5، 6.5،8،10،20 سانتی متر و طول 30 سانتی متر تولید میشوند. حسن این لوله این است که در برابر واکنش شیمیایی آب مقاوم است .

 لوله های سیمانی معمولا به قطر 10،15،20 سانتی متر و طول 30 سانتی متر موجود است . باید توجه داشت در خاکهای سولفات دار باید در ساخت این لوله ها از سیمان ضد سولفات استفاده شود .  

لوله های پلاستیکی ( پلی اتیلن و پی وی سی )به دو صورت صاف و موجدار تولید میشوند . در شرایط مساوی قطر لوله موجدار را باید 20 درصد بیشتر از طول لوله صاف گرفت که این مساله به خاطر بوجود آمدن افت ناشی از موجهای لوله است .طول این لوله ها تا 100 متر میرسد .

 

 

 زهکش لانه موشی : شبیه زهکش لوله ای ( یک نوع تونل زیر زمینی ) که از عبور یک جسم مخروطی شکل در خاک بوجود میآید .این نوع زهکش معمولا در مناطقی بکار میرود که مواد آلی آن زیاد است و برای یک فصل زراعی کاربرد دارد.

 
زهکش عمودی : بصورت چاه عمل میکند و چنانچه تعداد چاهها در یک منطقه بیشتر باشد اثر زهکشی بیشتر است .ضمنا در این نوع زهکشی می بایست آب جمع شده در چاه مکش شده و به محل مناسبی انتقال یابد.به عمل تخلیه آب از جاه زهکشی را دیواترینگ (Dewatering) گویند.


 

زهکش حائل : بیشتر برای جدا کردن دو قطعه زمین بکار میرود تا آبی که از اراضی مجاور میآید وارد اراضی مورد نظر نشود . عمق این نوع زهکشها معمولا در حدود 2 تا 2.5 متر است و جهت کانال عمود بر آب زیر زمینی می باشد

بلوک گچی


 یکی دیگر از روشهای ساده برای اندازه گیری رطوبت خاک استفاده از قالب یا بلوکهای گچی است که به نام بلوکهای مقاومت نیز معروفند . برای ساختن بلوک گچی قالب مکعبی شکل به ابعاد 5/1*3*4 سانتی متر را تهیه کنید ، سپس دو قطعه تور سیمی از فولاد ضد زنگ به ابعاد 2*1 سانتی متر انتخاب کرده و به هر کدام یک سیم را لحیم کنید . این صفحات را که الکترود می نامیم به فاصله کمی از هم به طور موازی در داخل قالب قرار دهید و با قاب یا بست پلاستیک آنها را محکم کنید . پس از آماده شدن قالب و الکترودها گچ دندان پزشکی را به نسبت 1 به 1 با آب مقطر مخلوط کرده و خوب به هم زده و آن را یک دفعه اما به آرامی داخل قالب بریزد . با ضربه زدن به قالب سعی کنید هوای محبوس شده را خارج کنید . پس از آن گچ به اندازه کافی سفت شده و می توان آن را از قالب خارج کرد . بلوکها را حداقل به مدت یک شبانه روز در سایه خشک کنید آنگاه آنها را داخل آب قرار دهید تا به مدت 5/0 ساعت اشباع شوند و در همین وضعیت مقاومت دو سر الکترود را با دستگاه مقاومت سنج اندازه گیری کنید ، اگر عدد قرائت شده در بعضی از بلوکها از 5 درصد متوسط قرائت ها تجاوز کرد از آنها استفاده نکنید . بلوکهای آماده شده را داخل خاک گلدان قرار داده و پس از آبیاری مقاومت را در زمانهای مختلف اندازه گیری کرده و همزمان با برداشت نمونه رطوبت خاک را به دست آورید . با رسم منحنی تغییرات مقاومت بلوک و درصد رطوبت خاک بلوکها واسنجی می شوند . حال اگر این بلوکها را در خاک نصب کنیم کافی است فقط مقاومت را اندازه گیری کرده و از روی این منحنی ها می توان درصد رطوبت خاک را به دست آورد . در هنگام آزمایش بلوکهای گچی پس از آنکه آنها را داخل آب قرار دادید تفاوت قرائت
بلوکها نباید از 50 اهم بیشتر باشد . در اینصورت بلوکها یکنواخت نخواهد بود . اگر قرائت بلوکها در داخل آب همگی صفر باشند ایده آل است اما اگر قرائت ها اعدادی تا حدود 400 اهم را نشان دهند باز هم می توان با اعمال ضریب اصلاحی از آنها استفاده کرد ولی اگر قرائت بلوک در آب بسیار زیاد بود حتما توصیه می شود که از آن استفاده نشود . در حد ظرفیت زراعی باید قرائت بلوک حدود 500 تا 600 و در حد پژمردگی 50000 تا 75000 اهم باشد . البته بلوک گچی باید قادر باشد تا مقاومت 1000000 و 200000 اهم را هم اندازه گیری کند .
برای جلوگیری از پلاریزه شدن الکترودها و امکان بروز اشتباه در اندازه گیری رطوبت توصیه می شود از مقاومت سنجهایی استفاده شود که در آنها جریان برق مستقیم باطری به جریان متناوب تبدیل می شود . برای این منظور معمولا مقاومت سنج های 1000 سیکلی به کار برده می شود ، زیرا با انجام این کار از

عمل قطبی شدن جلوگیری شده و در اندازه گیریها کمتر اشتباه بروز می کند . مهمترین مزیت بلوکهای گچی علاوه بر سرعت اندازه گیری درجه دقت آنها در رطوبت های کم است . علاوه بر این بلوکها ارزان بوده و می توان تعداد زیادی از آنها را با هزینه کم در داخل خاک نصب کرد .
بزرگترین مشکل در بلوکهای گچی حساسیت آنها به شوری محلول خاک است . وجود نمک در آب باعث می شود که هدایت الکتریکی بلوک افزایش یافته و این امر باعث اشتباه در تخمین رطوبت گردد . زیرا اساس اندازه گیری رطوبت با بلوک گچی این است که وقتی یک بلوک خشک در خاک قرار می گیرد به دلیل خشک بودن بلوک هدایت الکتریکی بین دو سر الکترود صفر یا بسیار اندک است . اما چون بلوک از گچ با دانه های ریز درست شده است بلافاصله به لحاظ پتانسیلی با خاک تبادل رطوبت کرده و از این نظر با آن متعادل می شود . جذب آب توسط بلوک باعث افزایش هدایت الکتریکی می شود . حال اگر خاک شور باشد آبی که جذب بلوک می شود حاوی نمک بوده و لذا هدایت الکتریکی بیشتر افزایش می یابد . به طوریکه در دو خاک مشابه با رطوبت یکسان ، اگر یکی شور بود و دیگری شور نباشد ، عدد قرائت شده با بلوک یکسان نخواهد بود . با توجه به نیاز تعادل پتانسیلی بین بلوک و خاک لازم است که پس از نصب بلوک به مدت چندین ساعت صبر کرد تا این تعادل برقرار شود . برای این منظور بلوکها قبل از آبیاری در خاک قرار داده می شوند و معمولا در تمام فصل رشد در خاک باقی مانده و فقط سیمهای متصل شده به الکترودها از خاک خارج می باشد که در موقع اندازه گیری به دو سر مقاومت سنج وصل شوند . گرچه در خاکهای معمولی بلوک می تواند تا 5 سال مورد استفاده واقع شود ولی در خاکهای شور یا آلی و خاکهای مرطوب بیش از یک سال عمر نخواهند کرد . در استفاده از بلوکهای گچی توصیه می شود فاصله آنها از یکدیگر در خاک کمتر از 30 سانتی متر نباشد بلوکها نسبت به درجه حرارت حساس بوده و در هنگام واسنجی آنها باید مساله در نظر گرفته شود .
پیزومتر : برای اندازه گیری پتانسیل فشاری در خاک معمولا از لوله های پیزومتر استفاده می شود . پیزومتر یک لوله ساده است که دو سر آن باز می باشد . اگر یک سر لوله را در خاک و نقطه مورد نظر قرار دهیم در صورت وجود پتانسیل فشاری آب در لوله بالا خواهد آمد . ارتفاعی که آب در لوله بالا می آید برابر پتانسیل فشاری در آن نقطه است .

طرز نمونه برداری خاک از مزرعه


قبل از اقدام به نمونه برداری نکات زیر بایستی به دقت مورد مطالعه قرار گیرد :

1ـ زمین بایستی قبلا به قطعات یکنواخت از لحاظ بافت ، رنگ ، شیب ، میزان فرسایش ، تاریخچه کشت و تناوب ونوع محصول وغیره تقسیم بندی شود. زیرا در جاهایی که سراشیبی بیشتر است در موقع بارندگی و آبیاری مواد غذایی واملاح خاک بیشتر در معرض تهدید قرار گرفته و از بین میرود و بر عکس در نقاطی که گود است تجمع املاح و مواد مغذی از سراشیبی ها بیشتر است. بنابراین در این موارد فقط با گرفتن نمونه های زیاد و نزدیک به هم می توان یک نمونه متوسط و معرف آن قسمت از مزرعه را بدست آورد.

2ـ پس از آنکه زمین به طرز بالا تقسیم بندی گردید میتوان اقدام به برداشت نمونه خاک کرد. بدین ترتیب که از هر قطعه یکنواخت تعداد 15 تا 20 نمونه هر کدام به وزن تقریبی یک کیلو گرم برداشته و سپس این نمونه ها را کاملا با هم مخلوط نموده و یک نمونه یک کیلو گرمی از آن بعنوان نمونه خاک آن قطعه زمین بخصوص، به آزمایشگاه ارسال میشود.

این عمل برای هر کدام از قطعات بطور جداگانه تکرار خواهد شد به طوری که از هر قطعه یک نمونه خاک جداگانه به آزمایشگاه ارسال شود.

3ـ هر نمونه آزمایشگاهی حداکثر از یک مساحت یکنواخت 15 هکتاری تهیّه میشود. برای مساحت های بیشتر به همان نسبت تعداد نمونه های زیادتری مورد لزوم خواهد بود.

4ـ عمق نمونه برداری بستگی به نوع محصول دارد و در محصولات صیفی و شتوی برابر عمق شخم خواهد بود (20 تا 30 سانتیمتر).

5ـ برای احداث مزارع یونجه 2 الی 3 نمونه از هر یک از قطعات (30 -0 سانتیمتری ،60 - 30 سانتیمتری و90 - 60 سانتیمتری ) ضروری است علاوه بر این حفر پروفیل به ابعاد 5/1*1*5/1 (عمق * عرض * طول) جهت بررسی کلاسه بندی خاک و تایید امکان کشت یونجه لازم میباشد. و یا نمونه های خاک را بر حسب طبقات خاک موجود در پروفیل (از طریق کارشناس تحقیقات خاک و آب) برداشت و هر کدام را جداگانه به آزمایشگاه ارسال نمود.

6ـ قبل از اقدام به نمونه برداری باید کاملا اطمینان حاصل نمود که سطح خاک آغشته به کود های حیوانی و یا شیمیایی و یا بقایای گیاهی نباشد. باید توجه داشت که کوچک ترین ذره کودی که در نمونه باشد نتیجه تجزیه را کاملا مغشوش خواهد نمود.

از زمینی که قبلا کود خورده باشد بایستی بطور جداگانه نمونه برداری نمود. ضمنا از برداشت نمونه از قطعاتی نظیر راه آبها و تودههای قدیمی و پوسیده کاه وکناره دیوار و یا پرچین ها و از این قبیل باید خودداری شود.

7ـ در مواقعی که زمین خیلی مرطوب است باید از نمونه گیری اجتناب نمود (مگر در موارد استثنایی). نمونه برداری از خاکهای خیلی خشک نیز به واسطه سفت بودن زمین مشکل است. بنابراین در موقع نمونه برداری زمین باید به اندازه کافی رطوبت داشته باشد. بهترین موقع نمونه برداری وقتی است که زمین گاو رو باشد.

8ـ قبل از فرستادن نمونه به آزمایشگاه باید آن را در هوای آزاد پخش نموده تا خشک شود. برای خشک کردن خاک مطلقاً نبایستی از حرارت استفاده شود.

9ـ پس از خشک کردن نمونه خاک ، آن را در داخل یک کیسه پلاستیکی ریخته و با نصب دو اتیکت یکی در داخل ودیگری در خارج ظرف که مشخّصات خاک از قبیل شماره نمونه ، محل نمونه برداری ، عمق نمونه برداری و تاریخ برداشت در روی آنها یادداشت شده باشد به آزمایشگاه ارسال نمایند.

10ـ همراه هر نمونه خاک ، برگ مشخّصات مخصوص آن نیز بایستی بطور کامل و دقیق پر شده و ارسال شود. این برگ غیر از اتیکت هایی است که به نمونه های خاک زده می شود و نمونه آن در این نشریه ملاحظه می شود. این برگه ها را می توان از مرکز تحقیقات کشاورزی دریافت نمود.

وسایلی که برای نمونه برداری به کار میرود :

وسایلی که جهت نمونه برداری از خاک مورد استفاده واقع می شوند عبارتند از :

1ـ بیل و بیلچه

2ـ اوگر مته ای

3ـ اوگر تو خالی

بطور کلّی بیل راحت ترین و سریع ترین وسیله نمونه برداری از خاک میباشد.

انواع تجزیه های خاک به شرح زیر میباشد :

1ـ در صد اشباع

2ـ اسیدیته(ph)

3ـ املاح محلول

4ـ فسفر قابل جذب

5ـ پتاسیم قابل جذب

6ـ ازت قابل جذب

7ـ مواد آلی

8ـ کربنات کلسیم

9ـ در صد گچ

10ـ آنیون ها و کاتیون های محلول

11ـ ظرفیت تبادل کاتیون

12ـ سدیم قابل تعویض

13ـ آزمایش مکانیکی

14ـ وزن مخصوص ظاهری

15ـ وزن مخصوص حقیقی

16ـ ضریب نگهداری آب در خاک

17ـ ضریب نقطه پژمردگی

راهنمای مطالعه بعضی از نتایج تجزیه خاک :

پس از تجزیه خاک کارشناسان خاک و آب و تغذیه گیاهی راهنمایی های لازم را به عمل خواهند آورد. مطالب زیر به عنوان راهنمایی مقدماتی وکلّی ذکر می گردد.



Ph


خاک فوق العاده خاصیّت اسیدی دارد
کمتر از 5/4

خاک خیلی زیاد خاصیّت اسیدی دارد
5 - 5/4

خاک زیاد خاصیّت اسیدی دارد
5/5 – 1/5

خاک از نظر خاصیّت اسیدی متوسط است
6- 6/5

خاک کمی خاصیّت اسیدی دارد
5/6 – 1/6

خاک خنثی
3/7 – 6/6

خاک دارای خاصیّت قلیایی متوسط است
8 – 4/7


خاک دارای خاصیّت قلیایی زیاد است
9 – 1/8

خاک دارای خاصیّت قلیایی بسیار زیاد است
بیشتر از 1/9



خاکهای عمیق با بافت سبک تا متوسط و حاصلخیز مناسب کشت یونجه هستند و Ph مناسب آن 5/7 – 5/6 است

برنامه ریزی خشکسالی

بعلت اینکه خشکسالی از مشخصه های عادی تمامی اقلیم ها می باشد, لازم است که برنامه ریزی مناسبی برای کاهش اثرات آنها صورت پذیرد. برنامه ریزی خشکسالی که در اینجا ارائه میشود برای اولین بار در سال 1990 ارائه گردید و حاصل تحقیقی است که در آمریکا با حمایت مالی بنیاد علوم انجام شد. از آن زمان این برنامه ریزی مورد تجدید نظر قرار گرفته و به دفعات به روز شده است.



برنامه ریزی خشکسالی که در اینجا ارائه میشود برای اولین بار در سال 1990 ارائه گردید و حاصل تحقیقی است که در آمریکا با حمایت مالی بنیاد علوم انجام شد



برنامه ریزی 10 مرحله ای برای خشکسالی

مرحله 1 : انتخاب گروه ضربت خشکسالی

مرحله 2 : بیان اهداف و کاربرد برنامه های خشکسالی

مرحله 3 : دعوت از تمامی سازمانها و افراد ذینفع و حل تضادها (منافع)

مرحله 4 : فهرست بندی منابع و شناسایی گروه های در معرض خطر

مرحله 5 : توسعه استخوان بندی سازمانی و آماده کردن برنامه خشکسالی

مرحله 6 : پیوند زدن علم و سیاست و پوشانیدن خلل سازمانی

مرحله 7 : برنامه پیشنهاد را در معرض عموم قراردادن و ارزیابی واکنشها

مرحله 8 : اجرای برنامه

مرحله 9 : ایجاد برنامه های آموزشی

مرحله 10 : ارزیابی پس از خشکسالی



خشکسالی از مشخصه عادی تمامی اقلیمها می باشد



گام اول: انتخاب گروه ضربت خشکسالی
برنامه ریزی خشکسالی با انتخاب یک گروه ضربت بوسیله دولت آغاز می شود. این گروه دو هدف را دنبال می کند. در مرحله اول, گروه توسعه و ایجاد برنامه را مدیریت نموده و گروه ها و سازمان های مختلف را در این راستا هماهنگ می کند.

در مرحله بعد پس از آنکه برنامه ایجاد گردید, در حین خشکسالی گروه علاوه بر ایجاد هماهنگی برای انجام اقدامات لازم و اجرای برنامه های کاهش اثرات و اقدامات واکنشی, توصیه های لازم را به دولت ارائه می کند.



اهداف گروه ضربت شامل ایجاد برنامه خشکسالی قبل از وقوع آن و ایجاد هماهنگی برای انجام اقدامات لازم در حین خشکسالی می باشد



به گروه ضربت, نظارت بر ایجاد سایت اینترنت که حاوی اطلاعات لازم در مورد برنامه خشکسالی و یک کپی از برنامه و اطلاعات به روز در مورد اقلیم و منابع آب باشد توصیه می شود.

گروه ضربت بایستی با توجه به چند رشته ای بودن ماهیت خشکسالی و اثرات شکل گیری از نمایندگان سازمانهای دولتی و دانشگاهها تشکیل شود. و همچنین گروههای طرفدار محیط زیست و نمایندگان گروه های کاری برآورد خطرپذیری بایستی در گروه حضور داشته باشند.



در صورتیکه خشکسالی در گذشته نزدیک یا دور بوقوع پیوسته باشد گروه ممکن است از آغاز کار, زیر ذره بین افکار عمومی باشد و یا این بدور از توجه مردم اقدامات خود را به انجام برساند. جدا از این مسئله, گروه بایستی از کارشناسان روابط عمومی برای ارتباط دو جانبه با مردم استفاده کند. در شرایط ایده آل, گروه بایستی به یک مقام رسمی اطلاع رسانی که با رسانه های محل آشنا باشد, دسترسی داشته باشد.


به گروه ضربت, نظارت بر ایجاد سایت اینترنت که حاوی اطلاعات لازم در مورد برنامه خشکسالی و یک کپی از برنامه و اطلاعات به روز در مورد اقلیم و منابع آب باشد توصیه می شود.

                                   

سوپر جاذب چیست


یک ماده افزودنی خاک بوده که آب و مواد غذایی را جذب و حفظ می کنند و با خاک کشت همراه گشته و به رشد مطلوب گیاه ،کاهش اتلاف آب و هزینه های آبیاری کمک می نماید اساس ساخت این پلی مرها آلی بوده و به صورت مصنوعی تولید می گردند از پلی اکریلات پتاسیم و کوپلمیرهای پلی اکریل آمید ساخته شده و ویژگی منحصر به فرد آن بالا بودن ظرفیت جذب آب و حفظ آن است این مواد پس از استفاده مستمر ، در خاک کشت هیچگونه تغییری ایجاد نمی نماید و گیاهان ، ارگانیسم های زنده خاک یا آب سطحی را آلوده نمی سازند. مطالعات توسط سازمان محیط آلمان و سایر کشورها نشان داده که استفاده از این ماده هیچگونه عوارضی برای انسان ، گیاه و خاک و محیط زیست ندارد این مواد تقریباً 500 – 200 برابر وزن خود آب جذب می کنند ، در این حال پس از آبگیری دانه های خشک مواد سوپر جاذب ژل دانه دانه بوجود می آورند با استفاده از این پلی مر می توان دور آبیاری را افزایش داد . این مواد شامل سه نوع کاتیون ، آنیونی و خنثی می باشد که در کشاورزی نوع آنیونی آن با داشتن بار منفی مورد توجه می باشد . سوپر جاذبه های آنیونی با دارا بودن قابلیت بالای ظرفیت کاتیونی قادرند علاوه بر جذب مقادیر قابل توجهی آب ،کاتیونهای موثر و مفید در رشد گیاه را در خود جذب کنند و ضمن جلوگیری از هدر رفتن آنها در موقع لزوم آنها را در اختیار گیاه قرار دهند. این مواد بی بو ، بی رنگ و بدون خاصیت آلایندگی خاک ، آب و بافت گیاهی می باشند.



مزایای استفاده از پلی مرهای سوپر جاذب در کشاورزی


• افزایش ظرفیت حفظ آب و مواد غذایی خاک برای مدت طولانی
• کاهش تعداد نوبتهای آبیاری تا حد 50 درصد
• مصرف یکنواخت آب برای گیاهان
• رشد سریع تر و مطلوب تر ریشه با ذخیره مواد غذایی
• کاهش شستشو آب و مواد غذایی موجود در خاک
• کاهش هزینه های آبیاری
• فراهم نمودن رطوبت پوسته خاک
• بالا بردن ظرفیت تبادلی سوپر جاذب ها و تبادل کاتیونی در خاک
• به حداکثر رساندن پتانسیل تولید محصول
• رشد سریع تر و سالم تر گیاهان مخصوصاً در مناطق بسیار گرم و خشک
• مصرف بهینه کودهای شیمیایی
• محافظت ریشه های روی خاک در برابر خشک شدن در زمان حمل و نقل و انبار کردن نهال ها
• هوا دهی بهتر در خاک
• امکان کشت در مناطق بیابانی و سطوح شیب دار
• افزایش فعالیت و تکثیر قارچهای مایکوریزا
• ثبات و اثر طولانی سوپر جاذب
• تقویت حالت تخلخل ، تغذیه پذیری و ثبات ساختار کشت


مقدار کاربرد سوپر جاذب ها

مقدار کاربرد آن بستگی به نوع سوپر جاذب ، بافت ، خاک ، گونه گیاهی و شرایط اقلیمی منطقه دارد . خاک رسی به دلیل دارا بودن درصد بالاتری خلل و فرج زیر نیاز کمتری به سوپر جاذب نسبت به خاک شنی و لومی دارد . بنابراین خاک شنی به دلیل قابلیت نگهداری آب کمتر عکس العملی بهتری نسبت به خاک رسی در مقابل کاربرد سوپر جاذب نشان داده ، در نتیجه میزان کاربرد آن در خاکهای رسی کمتر از خاکهای لومی و شنی است مقدار مصرف آن در خاکهای نواحی گرم و خشک به مراتب بیشتر از نواحی مرطوب و خشک می باشد کاربرد آن در نواحی مرطوب عمدتاً در گیاهان مستقر در شیب ها توصیه می شود . میزان کاربرد برای گیاهان آبدوست بیشتر از خشکی دوست است.

کاربرد بیش از حد آن توصیه نشده زیرا این ماده در اثر جذب آب متورم می شود و ممکن است موجب خروج ریشه ها و گیاه از خاک شود. لازم به ذکر است که روش کاربرد سوپر جاذب تأثیر به سزایی روی میزان مصرف آن به خصوص تحت شرایط مزرعه ای دارد . به هر حال کاربرد این مواد بسته به شرایط مختلف می تواند نیاز آبیاری را تا 50 درصد کاهش دهد.



روش کاربرد سوپر جاذب ها


پلی مر سوپر جاذب می تواند به روش کپه ای ( درون گودالی ) ، نواری و اختلاط کامل با خاک به کار روند . نکته مهم در هنگام کاربرد این مواد این است که باید به خوبی با خاک مخلوط شوند و در سطح خاک استفاده نشوند علت این امر تأثیر اشعه خورشید و اشعه ماورا بنفش روی سوپر جاذب بوده که موجب شکستگی سریع آن می شود. این ترکیب هم چنین به عنوان بستر رویش گیاه و بصورت خالص و بدون خاک نیز می تواند مورد استفاده گیرد . در این شرایط بهتر است عناصر غذایی مورد نیاز گیاه را به آن اضافه نمود .کاربرد آن به دو صورت خشک و آبگیری ( ژل ) توصیه می شود. در صورتیکه به صورت ژل در خاک مصرف شود .
نوع پودری آن دارای دوام کمتری بوده و حدود 12 – 6 ماه در خاک پایدار است و بیشتر بعنوان پوشش بذر و نیز برای ریشه های لخت نشاها و جوانه هایی استفاده می شود که رطوبت برای آنها بسیار بحرانی باشد . هنگام کاربرد برای درختان ، قسمتی از خاک پای درخت را خارج نموده و به مقدار لازم سوپر جاذب را با مقداری خاک مخلوط کرده ، سپس این مخلوط را در قسمت زیرین ریخته و روی آن را با خاک معمولی پر می نمائیم . در گلدان بهتر است سوپر جاذب را با مقداری خاک مخلوط کرده و به صورت لایه ای در قسمت پایین گلدان مصرف کرد تا از هدر رفتن آب جلوگیری نماید . هم چنین می توان سوراخهای تا دو سوم عمق گلدان ایجاد کرد و مقدار لازم پلی مر خشک را درون آنها ریخته ، آن را فشرد و سپس سوراخها را با مقداری خاک معمولی پوشاند. تعداد سوراخها و مقدار پلی مر بستگی به اندازه گلدان دارد.
در مزارع پلی مر به دو صورت به کار می رود . در روش اول پس از پخش سطحی سوپر جاذب آن را توسط شخم تا عمق زیر ناحیه ریشه بر می گردانیم آنگاه می توان مبادرت به کاشت گیاه نمود .

در روش دوم از کود پاش نواری استفاده می کنیم که طی آن سوپر جاذب توسط لوله های دستگاه در کنار ردیفهای کاشت و در عمق ریشه های قرار می گیرد.
این مواد پس از تماس با آب بصورت یک ژل متورم در آمده و آب و مواد غذایی محول را در خود نگه می دارند بررسیها نشان داده که کاربرد سوپر جاذب بسته به نوع گیاه ، بافت خاک و شرایط اقلیمی موجب کاهش آب مصرفی به میزان 50 – 40 درصد می شود .


زمینه های کاربرد سوپر جاذب ها


1- کشاورزی
2- مصارف بهداشتی و پزشکی و داروسازی
3- حفظ تازگی میوه و سبزی بسته بندی
4- برف مصنوعی
5- ژل های مخصوص آتش نشانی

نکات مورد توجه

سوپر جاذبه ها جایگزین کودهای شیمیایی و آبیاری نمی باشند . این مواد تنها قابلیت نگهداری آب و برخی ازعناصر غذایی مورد نیاز گیاه را در خاک افزایش می دهند و از آبشویی و هدر رفتن N , K , Zn , Fe , B , P خاک جلوگیری بعمل می آورند. سوپر جاذبه ها می توانند با کود شیمیائی ، علف کش ها و آفت کش ها مخلوط شده و بدون هیچ گونه اثر متقابل با یکدیگر به کاربرده شوند.


این مواد پس از 12 - 5
سال در اثر تجزیه میکروبی و تاثیر نور خورشید به تدریج از بین می روند و به مواد ی همچون آب و دی اکسید کرین و آمونیوم تبدیل می شوند . وهیچ آسیبی به طبیعت وارد نمی کنند.

                                   

حوزه های آبخیز کشور


حوزه آبخیز دریای خزر
این حوزه آبخیز که مساحت آن به 173،300 کیلومتر مربع می‌رسد، دارای شیب زیاد بوده و بیشترین اختلاف ارتفاع حوزه آبخیز‌های کشور را که بالغ بر 5500 متر است، به خود اختصاص داده است. در این محدوده سیزده رودخانه با مساحت حوزه آبخیز بیش از هزار کلیومتر مربع وجود دارد که رودخانه‌های ارس، سفیدرود، هراز و اترک از نظر وسعت حوزه آبخیز و ویژگیهای اقلیمی و تداوم آبدهی متفاوت از حوزه دیگر می باشند. رودهای فوق دارای حوزه آبخیز‌های کوهستانی وسیعی هستند و پوشش گیاهی غالب آنها جنگلی است.

حوزه خلیج فارس و دریای عمان
این حوزه آبخیز با مساحت 437،150 کیلومتر مربع یکی از پهناورترین حوزه آبخیز‌های ایران محسوب می‌گردد و رودخانه‌های غرب، جنوب غربی و جنوب زیرحوزه های سرچشمه گرفته از کوههای زاگرس و بشاگرد و بلوچستان را در بر می‌گیرد. جمعاً 29 رودخانه با مساحت بیش از 1000 کیلومتر مربع در این زیرحوزه وجود دارد که یا به درون کشور عراق جریان می‌یابند و پس از پیوستن به رودخانة دجله به خلیج فارس می‌ریزند و یا بطور مستقیم به خلیج مزبور و یا دریای عمان وارد می‌گردند. برخی ازبزگترین رودخانه‌های این حوزه آبخیز به ترتیب از شمال تا جنوب خاوری عبارتند از: سیروان، کرخه، کارون، جراحی، زهره، هله، موند، کل، میناب و سرباز.
در باب اهمیت این زیرحوزه فقط به این نکته بسنده می شود که رودهای دشت خوزستان به تنهائی 30 درصد منابع آب کشور را دارا می باشند.

حوزه آبخیز دریاچه ارومیه
مساحت این حوزه دریاجه ارومیه 50،850 کیلومتر مربع است در این حوزه دریاجه ارومیه هشت رودخانه با مساحت آبریز بیش از هزار کیلومتر مربع وجود دارد و زرینه‌رود بزرگترین و مهمترین آنها بشمار می‌آید.

حوزه آبخیز دریاچه نمک قم
مساحت حوزه دریاچة نمک قم 89،650 کیلومتر مربع است و بخش بسیار ناچیز و کوچکی از آن نیز به دریاچة حوض‌سلطان و کویر میغان و دشت جنوبی قزوین وارد می‌گردد. رودخانه‌های جاجرود، کرج، شور، قره‌چای و قمرود به این حوزه زهکشی می شوند در این محدوده شش رودخانه با مساحت بیش از هزار کیلومتر مربع وجود دارد که رودخانة شور و قره‌چای و قمرود بزرگترین آنها محسوب می‌شوند.

حوزه آبخیز اصفهان و سیرجان
این حوزه که از زیر حوزه ‌های کوچک باتلاق گاوخونی، کویر ابرکوه، شوره‌زار مروس و کویر سیرجان تشکیل یافته است، دارای 90،700 کیلومتر مربع مساحت است و زاینده‌رود بزرگترین رودخانة آن بشمار می‌آید. انتقال آب کارون از طریق تونل کوهرنگ به زاینده رود از وقایعی است که بر بیلان هیدرولوژیک این محدوده تاثیر دارد.

- حوضة نیریز یا بختگان
این حوزه با مساحت 31،000 کیلومتر مربع از حوز‌های فرعی دریاچة کافتر، دریاچة بختگان و دریاچة مهارلو تشکیل شده و رودخانة کر مهمترین رود این منطقه محسوب می‌شود.
- حوزه آبخیز جازموریان
حوزه جازموریان با مساحتی برابر 69،600 کیلومتر مربع در جنوب شرقی ایران و بین رشته‌کوههای بشاگرد (در جنوب) و جبال بارز (در شمال) جای دارد و آبهای سطحی آن کلاً به هامون جزموریان می‌ریزد. در این حوضه پنج رودخانه با مساحت آبریز بیش از هزار کیلومتر مربع وجود دارد که هلیل‌رود بزرگترین آنهاست.

- حوزه دشت کویر
این حوزه که یکی از کم بارش ترین حوزه های کشور محسوب می شود از حوضه‌های کوچکتری چون کویر حاج علی‌قلی، کویر نمک و دشت گناباد تشکیل می‌یابد و مساحت آن به 227،400 کیلومتر مربع بالغ می‌گردد.. از رودخانه‌های قابل توجه این حوزه به حبله‌رود ( واقع در گرمسار) و کال‌شور جاجرم که یکی از طویل‌ترین رودخانه‌های ایران است، می‌توان اشاره نمود.

حوزه آبخیز کویر لوت
مساحت این حوزه که حوضة کویر لوت از زیرحوزه ‌های کوچک‌تری چون نمکزار طبس، دغ محمد‌آباد، کویر ساغند، شوره‌زارهای شمال خاوری شهرستان بافق و کویر سرجنگل تشکیل یافتهو یکی از کم‌باران‌ترین و خشک‌ترین حوضه‌های ایران است به199،000 کیلومتر مربع بالغ می‌گردد و از مهمترین رودخانه‌های آن که اغلب سیلابی و فصلی هستند می‌توان به رودخانة تهرود واقع در استان کرمان اشاره کرد.

حوزه اردستان و یزد و کرمان
این حوزه که با مساحت 99،800 کیلومتر مربع یکی از خشک‌ترین و بی‌آب‌ترین حوضه‌های ایران بشمار می‌آید، از زیرحوزضه‌های کوچک‌تری چون دغ‌سرخ، کویر سیاه‌کو، کویر درانجیر، دشت جنوب خاوری یزد، شنزار کشکوئیه، دشت کویرات و شنزارهای جنوب کرمان تشکیل یافته است.
- حوضة صحرای قره‌قوم
-مساحت این حوضه 43،550 کیلومتر مربع است و یکی از حوضه‌های کم‌بارش ایران محسوب می‌گردد. به همین دلیل حوزه آبخیز آن حالت سیلخیزی و رودها حالت فصلی دارند و رودهای کشف‌رود و جام‌رود از مهمترین آنها بشمار می‌آیند.

- حوزه هامون
این حوزه که در شر
ق کشور واقع گردیده است مساحتی برابر با 109،850 کیلومتر مربع داراست و از حوضه‌های کوچک‌تری چون نمکزار خواف، دغ‌ شکافته، دغ بالا، دغ پترگان، دغ توندی، دریاچة نمکزار، دریاچة هامون صابری، لورگ‌شتران، دریاچة هامون، هامون گودزره، دریاچة کرگی، هامون ماشکل و نمکزارکپ تشکیل یافته است. این حوزه نیز از جمله کم‌باران‌ترین و خشک‌ترین حوضه‌های ایران محسوب می‌شود و رودهای هیرمند و ماشکل مهمترین رودهای آن بشمار می‌آیند