X
تبلیغات
رایتل
دسته‌بندی آب وخاک - سبز نیوز
مطالب کاربردی گیاهان زینتی.گیاهان دارویی.کشت قارچ.کشت گلخانه ای.تراریوم و بونسای
گرفتن وام گلخانه
تغذیه گیاهی در خاک های شور
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 03:00 ب.ظ | نوشته ‌شده به دست علیزاده | ( 17 نظر )

شوری و سدیمی بودن خاک

شوری و سدیمی بودن خاک یکی از مشکلات مهم خاکهای مناطق خشک و نیمه خشک است. در این مناطق بدلیل کمبود بارندگی و اقلیم خشک، املاح در خاک تجمع پیدا میکنند و در نتیجه خاکهای شور حاصل می‌شود. این خاک محیط نامناسبی برای رشد و تولید بوده که هم کمیت محصول را پائین میآورد و هم کیفیت محصول را کاهش می‌دهد.

طبق آمار %۱۵ سطح کل کشور ما را خاکهای شور و چیزی حدود %۵۰ خاکها قابل بهرهبرداری و آبیاری می‌باشند.

بطور کلی خاکهای شور دارای مقدار زیادی املاح محلول هستند که این نمک زیاد مشکلاتی را برای گیاه بوجود میآورد.

شوری خاک چگونه تعیین می‌شود؟

شوری خاک را براساس پارامتری بنام E.C. یا قابلیت هدایت الکتریکی مشخص میکنند. هدایتسنج الکتریکی، دستگاهی است که قابلیت هدایت الکتریکی محلول خاک یا E.C. را اندازهگیری می‌کند. خاکهایی که E.C. آن‌ها بیشتر از Ds/m  ۴ باشد جزء خاکهای شور طبقهبندی می‌شوند.

2.تحمل درختچه‌ها و درختان زینتی نسبت به شوری 

نام گیاه

حداکثر مجاز E.C. (Ds/m)

نام گیاه

حداکثر مجاز E.C. (Ds/m)

یاسمن

2-1

کاج سیاه

6-4

گل رز

3-2

نعلب درختی

6-4

لاله درختی

3-2

اوکالیپتوس

8-6

عَشَقه

4-3

خرزهره

8-6

بداغ 

4-3

نخل بادبزنی

8-6

توری

4-3

دراسیتا

8-6

ماگنولیا

6-4

گل کاغذی

8>

شمشاد

6-4

گل یخ

8>

 

 

حساسیت گیاهان به شوری خاک

گیاهان نسبت به شوری خاک حساسیت متفاوتی دارند و بعضی میتوانند شوری را تحمل کنند که به آن‌ها اصطلاحاً گیاهان متحمل به شوری گفته می‌شود. بعضی دیگر نسبت به شوری خاک حساس هستند که جزء گیاهان حساس محسوب می‌شوند. گل‌ها و گیاهان زینتی جزء گیاهان حساس به شوری قلمداد می‌شوند.

 3.اثرات شوری روی رشد گیاه

شوری خاک از چند طریق رشد گیاه را دچار محدودیت میکند:

1- آب قابل استفاده گیاه را کاهش میدهد؛ به عبارت دیگر در خاکهای شور، گیاهان زودتر دچار پژمردگی می‌شوند که این پدیده را اصطلاحاً خشکی فیزیولوژیکی میگویند. زیرا بدلیل شور بودن خاک، گیاهان نمیتوانند آب درون خاک را جذب کنند.

2-  مسمومیت؛ بعضی از یونها به مقدار زیاد در خاکهای شور وجود دارند و بر اثر جذب زیادشان توسط گیاه، برای آن ایجاد مسمومیت میکنند که از مهمترین آن‌ها می توان کلر،سدیم و بر را نام برد.

3- عدم تعادل تغذیهای؛ در خاکهای شور بدلیل وجود زیاد بعضی از یونها تغذیه گیاه، دچار مشکل می‌شود. بعنوان مثال در یک خاک شور، بدلیل غلظت زیاد کلر در محلول خاک و جذب آن بوسیله‌ی گیاه، جذب نیترات و سولفات توسط گیاه کم می‌شود. در صورتیکه نیترات و سولفات از یون‌های بسیار ضروری در تغذیه گیاه هستند. یا بعنوان مثال، جذب زیاد سدیم توسط گیاه، باعث کاهش جذب پتاسیم می‌شود.

نوع دیگری از خاکهای دارای املاح زیاد اصطلاحاً خاکهای سدیمی گفته می‌شوند یعنی خاکهایی که درصد سدیم تبادلی آن‌ها زیاد است.

 

بطور کلی، ما خاکها را بر اساس سه پارامتر E.C.،PH ،ESP  و یا درصد سدیم تبادلی طبقهبندی میکنیم.

 

4. طبقه‌بندی خاک‌های متاثر از املاح براساس Eph, Esp, Ec

نوع خاک

ph

Esp

Ec(Dsm-1)

شور

4 > 8/5

15<

<

سدیمی

4<

15>

8/5>

شور و سدیمی

4>

15>

8/5<

مصنوعی

4<

15<

8/5>

                                                           

 

خاکهای شور، خاکهایی هستند که E.C. آن‌ها بزرگتر از ۴ و ESP یا درصد سدیم تبادلی شان بیشتر از ۱۵ و PH  کمتر از ۵/ 8 دارند.

خاکهای سدیمی E.C. کمتر از ۴ و ESP بیشتر از ۱۵ و PH بیشتر از ۸/۵ دارند.

 

 

5.اصلاح خاکهای شور

راههای متفاوتی برای اصلاح خاکهای شور و سدیمی وجود دارد که به شرح ذیل است :

1- اساس اصلاح خاکهای شور، آبشویی است. یعنی از طریق مصرف آب اضافی، نمکهای محلول را از خاک شست و شو می‌دهیم؛

 

2- اما روشهای دیگری هست که اثرات سوء شوری را کاهش می دهند که مدیریت بهره برداری از خاکهای شور گفته می‌شود. بعنوان مثال، در خاکهای شور باید دور آبیاری را کوتاهتر بگیریم به عبارت دیگر آبیاری زود به زود  انجام شود تا غلظت املاح در خاک افزایش پیدا نکند؛

 

3- همچنین در خاکهای شور، باید از کودهایی استفاده بکنیم که اصطلاحاً ضریب شوری پائینتری داشته باشند یعنی کود خاک را شورتر نکند؛

 

4- استفاده از مواد آلی در خاکهای شور؛

5- استفاده از سیستم مناسب کشت و کار که اثرات شوری را کم کند؛

6- تغییر روش آبیاری.

 

اصلاح خاکهای سدیمی که ESPبالایی دارند با اصلاح خاکهای شور متفاوت است، در این خاک ها باید یکسری مواد شیمیایی اصلاح کننده به خاک اضافه بکنیم. مهمترین و بهترین موادی را که می توان در خاکهای کشور ایران استفاده کرد گچ یا گوگرد میباشد. گچ همان سولفات کلسیم است. به عبارت دیگر دارای عنصر کلسیم است. این کلسیم روی سطح ذرات خاک، جانشین سدیم می‌شود و سدیم را از سطح ذرات خارج کرده و وارد محلول خاک میکند و بعداً از طریق آبشویی، سدیم اضافی خارج می‌شود.

 

اما زمانی که گوگرد استفاده میکنیم گوگرد توسط یک باکتری بنام تیوباسیلوس دبو اکسیدانس در خاک اکسید می‌شود و تولید اسید سولفوریک میکند. اسید سولفوریک بر روی آهک خاک اثر کرده و تولید گچ میکند و گچی که بدین ترتیب تولید می‌شود کار اصلاح را انجام میدهد.

 

 

6.مقاومت گیاهان مختلف به درصد سدیم تبادلی خاک ESP

مقاومت

مقدار Esp

بسیار حساس

10-2

حساس

20-10

نیمه مقاوم

40-20

مقاوم

60-40

 

 نقش روی در کاهش تنش شوری 7.

شوری در ایران و بسیاری از مناطق خشک و نیمه خشک جهان عامل محدود کنندة رشد و نمو گیاهان زراعی است. براساس آمار موجود، سطح کلی خاکهای شور در اراضی ایران 33/7 میلیون هکتار برآورد شده است (مؤمنی، 1380). شوری خاک به روشهای متعدد در عملکرد محصول اثر می‌گذارد. از مهم‌ترین آثار شوری می‌توان به کاهش آب قابل استفاده گیاه، ایجاد مسمومیت توسط برخی یونهای سمی، فعالیت اندک در گیاه، ناهنجاریهای تغذیه‌ای، کاهش رشد و کیفیت محصول اشاره نمود. در شرایط شور، غلظت سدیم ) معمولاً بیش از غلظت عناصر غذایی پر مصرف و کم مصرف بوده و این امر موجب می‌شود در گیاهان تحت تنش شوری، عدم تعادل تغذیه‌ای از جهات گوناگون بروز کند. مطالعات انجام شده بیانگر این است که بخش عمدة مشکلات تغذیه‌ای گیاهان در شرایط شور، از طریق تغییر در قابلیت استفاده عناصر غذایی به صورت زیر ایجاد می‌شود (همایی، 1381).

  از طریق ایجاد اختلال در جذب و توزیع عناصر غذایی توسط ریشه‌ها و یا کاهش رشد آنها از طریق ایجاد اختلال در جذب توزیع عناصر غذایی توسط ریشه‌ها و یا کاهش رشد آنها از طریق مختل کردن متابولیسم عناصر غذایی در درون گیاه که به طور عمده مربوط به کاهش جذب آب توسط گیاه است. بدین ترتیب شوری می‌تواند با تأثیر بر شکلهای شیمیایی عنصر غذایی در خاک، انتقال، یا توزیع عناصر غذایی درون گیاه و یا غیر فعال نمودن تأثیرات فیزیولوژیکی عنصر غذایی مصرف شده، منجر به افزایش ذاتی نیاز غذایی گیاه گردد.

   قدم اول در بررسی وضعیت حاصلخیزی خاکها، تخمین صحیح میزان عنصر قابل جذب گیاه است. از آن جایی که روی (Zn) یکی از عناصر ضروری گیاه بوده و کمبود آن معمولاً در اوایل فصل رشد گیاه مشاهده ‌می‌شود، وضعیت عنصر روی قبل از کشت و تعیین مقدار روی مورد نیاز گیاه بسیار مهم است. بدین منظور از روشهای عصاره‌گیری متفاوتی برای استخراج روی استفاده می‌شود. این روشها براساس استفاده از اسیدهای آلی و معدنی یا کمپلکسهای گوناگون برای عصاره‌گیری و سپس اندازه‌گیری عنصر روی در عصاره استوار است. تعیین این که کدام یک از روشهای عصاره‌گیری بهترین همبستگی را با عکس‌العمل گیاه (غلظت جذب عنصر، عملکرد مطلق و عملکرد نسبی) خواهد داشت، بیشترین به ویژگیهای خاک و همچنین گیاه مربوط است؛ در نتیجه سبب خواهد شد که در شرایط خاکی متفاوت، روشهای مختلفی مورد استفاده قرار گیرد (کشاورز، 1375). در بین عوامل مؤثر بر روی (Zn)

قابل استفادة گیاه، اثر شوری به درستی شناخته نشده است و احتمال دارد تفسیر نتایج تجزیه خاک برای روی قابل جذب گیاه در خاکهای شور و غیر شور، یکسان نباشد (حسینی و کریمیان، 1378). از این رو می‌بایست مرزهای جداگانه‌ای برای تفسیر نتایج تجزیه خاک، مخصوص خاکهای شور پایه گذاری کرد (ملکوتی و نفیسی، 1373). قبلاً در برخی مطالعات نشان داده شده است که در خاکهای شور، مصرف مقادیر بالاتر عنصر روی موجب افزایش تحمل گیاه به شوری و عملکرد آن می‌شود. در این ارتباط سؤالات اساسی زیر مطرح است:

   آیا شوری موجب تغییردر نگهداری وتثبیت روی درخاک‌خواهد شد؟ و آیا این موضوع موجب تفاوت در روش استخراج روی از خاک در شرایط شور نسبت به شرایط غیر شور خواهد گردید؟

   آیا شوری موجب اختلال در جذب و یا توزیع روی توسط ریشه‌ها شده و در مورد قابلیت استفاده روی تأثیر می‌گذارد؟

   تا چه اندازه‌ای نقش تغذیه‌ای روی در بهبود شرایط رشد گیاهان در خاکهای شور مؤثر است؟

 قابلیت استفاده روی در شرایط شور

  روی از جمله عناصر ضروری و کم مصرف برای گیاهان است که به صورت کاتیون دو ظرفیتی (Zn)    جذب می‌شود. این عنصر یا به عنوان بخشی از ساختمان آنزیمهای به کار می‌رود و یا به صورت کوفاکتورهای تنظیم کننده در تعداد زیادی از آنزیمها عمل می‌کند. روی در گیاهان حداقل در ساختمان چهار آنزیم کربنیک آنهیدراز، الکل دهیدروناژ، سوپراکسید  دیسموتاز و  پلی‌مزار به کار رفته است. این عنصر برای ساخته شدن ایندول استیک اسید از ترپتوفان ضروری می‌باشد. کمبود ) مانع از سنتز پروتئین و متابولیسم کربوهیدراتها نیز می‌شود. همچنین تراوایی غشائ پلاسمایی در گیاهان مبتلا به کمبود روی، افزایش یافته و منجر به خروج پتاسیم، نیترات و ترکیبات آلی از سلول ریشه می‌گیرد.

   مطالعه شکلهای شیمیایی روی در خاک به منظور ارزیابی قابلیت استفاده آن برای گیاه در کشاورزی و برای تغیین میزان تحرک در خاک حائز اهمیت فراوان است. بر این اساس. مقدار عنصر روی کل خاک به اجزاء متمایز زیر تقسیم می‌شود. این جزءها عبارتند از:

1 ـ یونهای آزاد Zn   ) ) و کمپلکسهای آلی آن در محلول خاک

2 ـ روی جذب سطحی شده و تبادلی در فاز کلوئیدی خاک

3 ـ کانیهای ثانویه و کمپلکسهای نامحلول در فاز جامد خاک

با توجه به خواص فیزیکی و شیمیایی خاک، قابلیت استفاده از روی متفاوت است. در بین عوامل مؤثر بر روی قابل استفاده گیاه، به طور عمده عواملی چون میزان کل روی، ، مواد آلی، کربنات کلسیم، محلهای جذب، فعالیت میکروبی و رژیم رطوبتی خاک نقش مهمی را ایفا می‌کنند، ولی سایر عوامل نظیر شرایط اقلیمی، شوری و اثرات متقابل روی و سایر عناصر کم مصرف و پر مصرف نیز مهم هستند. با این وجود، مطالعات اندکی در رابطه با اثر شوری خاک بر تغذیه گیاهان از جهت عنصر کم مصرف روی انجام شده است. در این ارتباط اثر سمی بور عموماً شناخته شده است ولی رفتار آهن )، منگنز ) و روی Zn) ) در خاکهای شور کاملاً شناخته نشده است.    در شرایط شور قابلیت استفاده عناصر غذایی به غلظت و ترکیب نمک بستگی دارد. علاوه بر این، با توجه به واکنش نمک PH) )، قدرت یونی و ضریب فعالیت نمک، اثر شوری بر حلّالیت عناصر غذایی متفاوت است. نمکهایی که هیدورلیز شده و سبب تغییر می‌شوند، می‌توانند تغییرات بیشتری را در این شرایط سبب گردند. فعالیت یونی نمک نیز بر حلّالیت کربناتهای خاک و گچ تأثیر می‌گذارد. این موضوع سبب خواهد شد که تغییراتی در اشکال عناصر غذایی در خاک و قابلیت استفادة آن به وجودآید.

برخی مطالعات نشان داده است که میزان روی قابل استفاده با افزایش شوری (نمک ) زیاد می‌شود. دلیل این موضوع جایگزینی روی Zn) ) قابل تبادل با سدیم Na) ) اعلام شده است. از سوی دیگر طی دو آزمایش جداگانه در خاکهای شور و سدیک، مشاهده شد که حلّالیت عناصر کم مصرف Mn, Cu,Fe,Zn) ) فوق‌العاده کم بوده و کاهش در حلّالیت این عناصر، موجب کمبود آن در گیاهان می‌شود. در این ارتباط، حسینی و کریمیان (1378) طی بررسی خود بر روی اثر شوری در عصار‌ه‌پذیری روی قابل استفاده گیاهی با چهار سطح روی (0 , 10   و 15 میلی‌گرم در کیلوگرم خاک به صورت Zn- EDTA) ) و پنج سطح شوری (0 , 3/4 6 و 9/7 میلی‌گرم کلرید سدیم در هر کیلو‌گرم خاک) به سه روش عصاره‌گیری  به این نتیجه رسیدند که افزایش میزان شوری خاک موجب عصاره‌پذیری بیشتر روی بومی خاک می‌گردد. ولی عصاره‌پذیری روی مصرفی با افزایش شوری خاک کاهش می‌یابد. این موضوع به ویژه در عصاره‌گیر محسوس‌تر بود. با این وجود، در شرایط شور جذب عناصر غذایی به دلیل کاهش حجم ریشه و خاصیت آنتاگونیسمی بین عناصر غذایی و یونهای سمی کاهش می‌یابد. در این رابطه  و همکاران (2001) اعلام نمودند که با افزایش شوری، نسبت اندام هوایی به ریشه افزایش یافته و حجم ریشه کاهش می‌یابد. علاوه بر این، آنها کاهش جذب عناصر کم مصرف را در شرایط شور، ناشی از جذب بیشتر عناصری چون Ca,Na,Mg دانسته‌اند. شوری موجب تغییرات ساختمانی در ساقه، ریشه و برگ و گیاهان نیز می‌شود؛ به طوری که گیاهان تحت تنش شوری، دسته‌های آوندی کمتر و با قطر کوچکتری دارند، ولی در مقابل دارای سلولهای پارانشیمی بیشتری هستند. بر این اساس نشان داده شده که مصرف روی در غلظتهای بالا می‌تواند ریشه را (به واسطة افزایش سطح جذب آن) در شرایط شور بهبود بخشیده و تشکیل آوند چوبی را در مقایسه با گیاهان بدون مصرف روی زیاد کند ( ,  1997 ( . غلظتهای بالاتر روی Zn) )

نقش مهمی در افزایش سطح جذب به واسطة طویل شدن ریشه و همچنین تسهیل انتقال آب و عناصر غذایی در گیاه به دلیل افزایش قطر و تعداد آوندها خواهد داشت.

عکس العمل گیاه به روی در شرایط شور

بررسیها نشان می‌دهد که اثر متقابل مثبتی بین شوری خاک و مصرف روی در افزایش عملکرد گیاهان وجود دارد. در آزمایشی محققین نشان دادند که مصرف روی، سبب رشد و نمو گیاه گوجه فرنگی در سطوح بالای شوری می‌شود، ولی در خاک غیر‌شور، این گیاه هیچ عکس‌العملی به روی نشان نمی‌دهد. این وضعیت در خاکی رخ داد که مقادیر مناسبی از روی به طور طبیعی وجود داشت. در همین ارتباط اعلام شده است که مصرف روی حداکثر تا 10 میلی‌گرم در کیلوگرم خاک، موجب کاهش غلظت سدیم و افزایش غلظت پتاسیم در رقمهای حساس به شوری برنج می‌شود. ولی در مورد غلظت سدیم و پتاسیم در ارقام مقاوم به شوری، تأثیری ندارد. از این رو به نظر می‌رسد با توجه به مقاومت گیاهان به شوری، تأثیر‌پذیری آنها در اثر استفاده از روی نیز متفاوت است. برای مثال، گزارش شده است که بین سه گونة زراعی جو، چاودار و ذرت (با حساسیتهای مختلف به شوری)، بیشترین جذب نسبی روی ) در شرایط شور از جو به دست آمد که متحمل‌ترین گونه به شوری بود و بعد از آن، به ترتیب چاودار و ذرت قرار گرفتند. البته در جو نیز جذب نسبی روی ) حدود 20 درصد کاهش داشت. در مورد آهن Fe) ) نیز وضع به همین صورت بود. ولی جالب این که جذب دو عنصر کم مصرف منگنز Mn) ) و مس Cu) ) توسط جو در شرایط شور تغییری نیافت و شوری مانع جذب این عنصر نشد. به عبارت دیگر در گونه‌ گیاهی متحمل به شوری (جو) جذب منگنز و مس تفاوتی با جذب آنها در شرایط غیر شور نداشت (ملکوتی و همکاران، 1382). در آزمایش دیگری نیز نشان داده شد که در شرایط شور، مصرف عنصر روی، عملکرد اندام هوایی سویا را به طور قابل توجهی افزایش می‌دهد. دردی‌پور و همکاران (1380) همچنین نشان دادند که مصرف پتاسیم و روی بر مبنای آزمون خاک موجب افزایش عملکرد جو می‌شود. خوشگفتارمنش و همکاران (1380) دریافتند که در خاکهای شور مصرف سولفات روی موجب افزایش تحمل گیاه گندم به شوری و در نتیجه افزایش عملکرد آن می‌گردد. آنها اعلام کردند که در خاکهای شور بازده کودهای حاوی املاح پایین بوده و باید با مصرف مقدار بیشتری کود سولفات روی (تا حد 240 کیلوگرم در هکتار) عملکرد گیاه را افزایش داد.

بر همکنش مثبت پتاسیم و روی در مقابله با شوری

    گیاهان حساس به شوری نسبت به مصرف پتاسیم عکس‌العمل مناسب‌تری نشان می‌دهند. با افزایش نسبت پتاسیم به سدیم K/Na) ) در محلول خاک، تحمل گیاه به شوری افزایش می‌یابد. شواهد نشان می‌دهد که تحت شرایط شور، علائم کمبود پتاسیم با وجود بالا بودن غلظت آن در برگهای گندم، همچنان وجود دارد، چون مقداری از پتاسیم جذب شده برای خنثی کردن بار الکتریکی کلر ذخیره شده در واکوئلها تجمع یافته و کمکی به واکنشهای حیاتی نمی‌کند. از این رو در این شرایط با افزایش مقدار مصرف سولفات پتاسیم، می‌توان علاوه بر رفع علائم کمبود، اثرات مسمومیت شوری را نیز کاهش داده و عملکرد را افزایش داد (مهاجر میلانی و همکاران 1378؛ درودی و سیادت، 1378).    با افزایش غلظت پتاسیم در محلول خاک، تحمل گیاهان به تنش شوری زیاد   می‌شود. این در حالی است که وقتی میزان آب قابل دسترسی گیاه کم ‌باشد، افزایش پتاسیم حتی در شوریهای بالا (15 دسی‌زیمنس بر متر) باعث بیشتر شدن تحمل می‌شود. مصرف سولفات پتاسیم در شرایط شور موجب کاهش اثرات سوء تجمع سدیم و کلر در برگهای گندم شده و در نهایت عملکرد را افزایش می‌دهد. همچنین حد بحرانی پتاسیم برای محصولات زراعی مقاوم به شوری مانند پنبه در شرایط شور (250 میلی‌گرم در کیلوگرم) بیش از شرایط غیر‌شور (210 میلی‌گرم در کیلوگرم) است و برای گیاهان نیمه متحمل و یا حساس به شوری، این اختلاف بیشتر خواهد بود.    با افزایش غلظت پتاسیم و روی در شرایط شور، پراکنش و طول ریشه‌ها زیاد می‌شود که در نتیجة آن، سطح جذب عناصر غذایی افزایش می‌یابد. همچنین مصرف سولفات روی در این شرایط تشکیل آوندهای چوبی را در گیاهان تحت تنش شوری در مقایسه با گیاهان بدون مصرف آن بهبود داده و از تخریب آن جلوگیری می‌کند.    از آن جایی که کلر در رقابت بانیترات خاک، جذب ازت را مختل می‌نماید و از سوی دیگر با مصرف پتاسیم، بازیافت ازت افزایش می‌یابد، به طوری که به ازاء افزایش هر واحد شوری (بیش از آستانه کاهش گندم) حدود 25 کیلوگرم اوره و 20 کیلوگرم سولفات پتاسیم و 5 کیلوگرم سولفات روی در هر هکتار بیش از مقدار کود توصیه شده در شرایط غیر شور پیشنهاد می‌شود (ملکوتی و همکاران، 1381).

پیشنهادها (چه باید کرد؟)

در اراضی شور به دلایل متعددی از جمله بالا بودن  خاک، کمبود مواد آلی، درصد بالای کربنات کلسیم و بی‌کربنات کلسیم، تنشهای خشکی و شوری، کیفیت پایین آبهای آبیاری و مهم‌تر از همه غلظت بسیار اندک روی قابل استفاده، بازده کودهای حاوی روی بسیار پایین است. بنابراین احتمالاً مصرف سولفات روی در مقادیر کم نقش مؤثری در افزایش عملکرد گندم نخواهد داشت. تحقیقات بیشتر در این زمینه همچنان ادامه دارد.    به طور کلی مصرف سولفات روی در اراضی شور در شرایطی که شوری در حد کم تا متوسط باشد (با توجه به تحمل گیاه) بازده عملکرد خوبی را به همراه خواهد داشت

چاپ این مطلب: کلیک کنید

سیستم های آبیاری
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:50 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

سیستم آبیاری سنترپیوت به دلیل هزینه کارگری کم ، انعطاف پذیری زیاد ، راحتی اجرا و بهره برداری آسان ، یک سیستم آبیاری انتخابی درامر کشاورزی است . وقتی که سیستم سنترپیوت درست طراحی شود و به پخش کننده های آب با راندمان بالا تجهیز شود ، می تواند در منابع پردازش خود( آب ، انرژی ، زمان ) صرفه جویی نماید . از انواع مختلف این پخش کننده ها می توان به موارد زیر اشاره کرد :

حالت پخش اسپری در ارتفاع متوسط mid-elevation spray application ))، حالت پخش اسپری در ارتفاع کم( low-elevation spray applicator ) وحالت پخش دقیق با انرژی کم( low energy precison application).

حالت آبیاری موضعی زیرسطحی (subsurface drip irrigation ) ، به علت راندمان بالا با روش های ذکر شده قابل قیاس است.راندمان یکنواختی بالای آبیاری که منجر به تولید محصول و راندمان آب مصرفی بالا می شود ، بهترین وسیلة مقایسه روش های آبیاری برای مناطق و محصولات ویژه می باشد .

در آزمایشات مختلف محققان روشهای آبیاری LEPA ، MESA ، LESA ، SDI با 5 نرخ آبیاری ناقص(I0 ، I25 ، I50 ، I75 و I100) به صورت نسبت آب تهیه شده به مقدار آبیاری کامل برای گیاهان مختلف مورد ارزیابی قرار می گیرد ،که نرخ آبیاری کامل بر اساس ET پتانسیل محاسبه شده از ET گیاه مبنا و اعمال ضریب گیاهی محل تعیین می گردد.

براساس مطالعات انجام یافته عملکرد محصول و راندمان آب مصرفی( WUE ) در نرخ های I25 و I50 تحت روش SDI بیشتر از دیگر روش های آبیاری است و در روش LEPA معمولاً بیشتر از Spray ، اما از SDIکمتر می باشد . روند روش ها در نرخ I100معکوس بوده و عملکرد محصول و WUE در روش Spray بیشتر از LEPA و SDI می باشد . در نرخ آبیاری I75، نیز این مطلب صادق است .

کاهش محصول در آبیاری های کامل در نتیجة راناف سطحی برای روش LEPA و نفوذ عمقی برای SDI می باشد . در روش SDI با کاربرد مقادیر کمتر آبیاری نفوذ کاهش می یابد و تبخیر نیز با کاهش سطح خیش شده کاهش می یابد و فقط آبی که به بالا حرکت می کند تبخیر می شود.

هنگامی که روش LEPA با تدابیری از قبیل شیب کمتر از1 درصد ، کشت دایره ای ، ایجاد خاکریز فارو ، کنترل رطوبت خاک و برنامة آبیاری مناسب همراه باشد، بیش از 95 درصد آب در اختیار گیاه قرار خواهد گرفت .مدیریت راندمان بالای آبیاری Spray نیز شامل کاربرد نازل هایی با قطرات آب درشتتر ، اجرای نسبتاً کند پیوست برای تهیة‌ آب کاربردی عمیق تر و اجتناب از آبیاری اسپری در شرایط باد شدید می باشد.   

تانسیومتر : اندازه گیری پتانسیل ماتریک با وسایل ساده ای به نام تانسیومتر انجام می شود . تانسیومترها یا از نوع جیوه ای هستند و یا از نوع فلزی . تانسیومتر جیوه ای ، لوله ساده و خمیده ای است پر از آب که یک طرف آن منتهی به کلاهک سرامیکی است . طرف دیگر لوله وارد یک مخزن جیوه می شود . حال اگر کلاهک سرامیکی در داخل یک خاک قرار گیرد ، پس از مدتی توازن پتانسیل رطوبتی بین آب داخل تانسیومتر و آبی که در بیرون از آن در داخل خاک وجود دارد برقرار می گردد . برقراری تعادل با وارد شدن یا خارج شدن آب به داخل لوله تانسیومتر از طریق کلاهک آن که نسبت به آب نفوذپذیر است انجام می شود . اگر خاک خشک باشد ، آب را از داخل تانسیومتر به طرف خود خواهد کشید . در این وضعیت خلا ایجاد شده در داخل تانسیومتر موجب می شود که در طرف دیگر لوله ، جیوه صعود می نماید . مقدار بالا آمدن جیوه متناسب با پتانسیل آب در خاک خواهد بود .

تانسیومترهای جیوه ای بیشتر در کارهای آزمایشگاهی و تحقیقی مورد استفاده می باشند و چون کاربرد آنها در صحرا مشکل است در عمل از نوعی دیگر از تانسیومترها با نام تانسیومتر فلزی استفاده می شود . این تانسیومترها نیز اساسا مشابه تانسیومترهای جیوه ای هستند با این تفاوت که در آنها به جای خلاء سنج جیوه ای از یک خلاءسنج فلزی استفاده شده است تا حمل و نقل آن ساده باشد .
تانسیومتر فلزی از یک لوله پر آب تشکیل شده است که قسمت پایین آن از یک کلاهک سرامیکی درست شده و قسمت بالای آن مسدود است ، به طوری که اگر آب از کلاهک سرامیکی خارج شود در داخل لوله خلاء ایجاد می شود . به همین منظور در کنار لوله تانسیومتر ، خلاءسنجی به آن متصل است که قادر می باشد مقدار خلاء یا فشار منفی را اندازه گیری کند . اگر کلاهک سرامیکی در داخل خاک قرار گیرد با خروج یا ورود آب به تانسیومتر تعادل پتانسیلی بین آب داخل و خارج تانسیومتر براقرار می شود . بنابراین با تعادل پتانسیل رطوبتی بین آب داخل و خارج کلاهک ممکن است مقداری آب از لوله تانسیومتر خارج شود که این عمل باعث ایجاد خلاء و کاهش فشار در لوله می شود . مقدار خلاء یا فشار منفی توسط خلاءسنج قابل قرائت است . معمولا درجه بندی خلاءسنج بین 0 تا 100 بوده که هر کدام از درجات آن معادل 10 سانتی متر فشار منفی است . بنابراین اگر عقربه خلاءسنج روی عدد 25 باشد نشان می دهد که فشار در خلاءسنج 250- سانتی متر است .
همانطور که گفته شد تانسیومترها در پتانسیل بالاتر از یک اتمسفر کارآیی ندارند زیرا در این پتانسیل حباب های هوا وارد تانسیومتر گردیده و عدد قرائت شده صحیح نخواهد بود . برای اطمینان از اینکه تانسیومتر تا این پتانسیل به خوبی کار خواهد کرد لازم است تانسیومترها را قبل از استفاده آزمایش کنیم . برای تست تانسیومتر ابتدا کلاهک را به مدت چند ساعت داخل ظرف آبی قرار دهید تا کاملا اشباع شود سپس در حالی که کلاهک داخل آب قرار دارد لوله تانسیومتر را به کمپرسور هوا وصل کرده و بتدریج فشار هوا را افزایش دهید . هنگامیکه فشار به 8/0 تا 9/0 اتمسفر رسید حبابهای هوا در داخل ظرف از کلاهک بیرون خواهند آمد . در این صورت تانسیومتر خوب کار خواهد کرد . چنانچه حباب هوا در فشار کمتر از 8/0 اتمسفر ظاهر شد آن تانسیومتر برای استفاده مناسب نخواهد بود .
برای استفاده از تانسیومتر با مته ای که قطر آن به اندازه قطر لوله تانسیومتر یا کمی کمتر از آن باشد چاهکی را تا عمق مورد نظر حفر کنید . قبل از گذاشتن تانسیومتر کمی خاک نرم و مرطوب در چاهک بریزید . حال تانسیومتر را داخل چاهک قرار دهید و اطمینان حاصل کنید که با لگد کردن اطراف آن خاک کاملا به کلاهک و لوله اطراف آن چسبیده و تماس داشته باشد . با خاک در اطراف تانسیومتر برآمده گی کوچکی بسازید تا از تجمع آب در اطراف لوله تانسیومتر و نفوذ عمودی آن در طول لوله تانسیومتر جلوگیری شود . چون در خاکهای شنی حدود 80 درصد آب قابل استفاده در مکش 85/0- اتمسفر قرار دارد . لذا تانسیومترها در خاکهای شنی بیشتر قابل استفاده است . برای ساختن تانسیومتر می توان به شرح زیر عمل نمود :
1 _ یک لوله از جنس PVC یا پلکسی گلاس به قطر 1 سانتی متر انتخاب کرده و دو انتهای باز آن را با سوهان صاف کنید .

2 _ در فاصله 10 سانتی متری از انتهای بالای لوله سوراخی تعبیه کنید .
3 _ در صورتی که خلاءسنج فلزی در اختیار باشد آن را به سوراخ تعبیه شده پیچ کرده و آب بندی نمایید . در غیر اینصورت یک لوله مسی به طول 4 سانتی متر را که قطر خارجی آن کمی کوچکتر از قطر داخلی سوراخ تعبیه شده می باشد وارد سوراخ نموده و با چسب اطراف آن را محکم کنید . این لوله بعدا به فشارسنج جیوه ای یا فلزی متصل گردد .
4 _ کوزه متخلخل سرامیکی با مخلوط کردن اجزاء زیر و سپس قالب ریزی در قالب مخصوصی که از گچ درست شده است ساخته می شود .
_ 75% رس ایلیت
_ 20% کوارتز
_ 5% کربنات کلسیم
_ کمی سیلیکات سدیم و پروسلین
_ آب
5 _ پس از قالب کوزه را در مجاورت هوا قرار داده تا خشک شود و سپس در حرارت 1000 درجه آن را بپزید .
6 _ کوزه را با چسب به لوله اصلی متصل کنید .
7 _ با درب بند لاستیکی انتهای بالایی لوله را مسدود کنید

منبع:وبلاگ بانک مقالات کشاورزی وگیاشناسی

 

چاپ این مطلب: کلیک کنید

روش‌های تشخیص توانایی تنظیم اسمزی در گندم
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:41 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

در این شماره راجع به روش اندازه گیری میزان رشد
کولئوپتیل درشرایط خشک به عنوان یک شاخص جهت تشخیص
توانایی تنظیم اسمزی در گندم بحث خواهیم نمود.
نتایج آزمایشاتی که تا اواسط دهه 80 ادامه داشتند

نشان داده بودند که بین برگ پرچم ژنوتیپ های مختلٿ
گندم از لحاظ توانائی تنظیم اسمزی اختلاٿات اساسی
وجود داشته و این اختلاٿات در توانائی تنظیم اسمزی
با میزان ماده خشک و عملکرد تولید شده در شرایط
مزرعه همبستگی دارد. همچنین معلوم شده بود که
‌عملکرد بیشتر ژنوتیپ های دارای توانائی تنظیم
اسمزی ناشی از زیادتر بودن شاخص برداشت و میزان
تبخیر و تعرق آنها می باشد.‌ به نظر می رسید که با
انتخاب ژنوتیپهای دارای توانایی تنظیم اسمزی در
شرایط خشک می توان محصول را به طور قابل ملاحظه ای
اٿزایش داد با وجود اینکه تشخیص ژنوتیپ های مطلوب
از لحاظ توانایی تنظیم اسمزی با اندازه گیری
پتانسیل آب ، پتانسیل اسمزی ومحتوی آب نسبی در
شرایطی که خشکی اعمال می شود و کاربرد روش هایی که
تا کنون ذکر شده است امکان پذیر است اما هنگامی که
تعداد ژنوتیپهای مورد مطالعه زیاد باشند کاربرد
این روش ها، پر زحمت و بسیار وقتگیر خواهد بود.
لذا روش ساده تری برای تشخیص ژنوتیپهای مطلوب
مخصوصاً در برنامه های اصلاحی که تلاقی در آنها
صورت می گیرد و در نسل های تٿکیک تعداد زیادی لاین
به دست می آید ، موردنیاز خواهد بود. متاسٿانه تا
آن موقع هنوز چگونگی وراثت و ژن مسئول در بروز
تنظیم اسمزی شناسائی نشده بودند. و همان طور که
جلوتر ذکر خواهد شد بعد از شناسایی ژن مذکور
روشهای ساده تری برای شناسایی ژنهای مطلوب ارائه
شدند.
ولی در این مرحله تصور بر این بود که در صورتی که
بتوان توانائی تنظیم اسمزی را در همان هٿته اول
رشد گیاه یعنی هنگامی که کولئوپتیل و ریشه چه
درحال رشد هستند با استٿاده از صٿات رشدی آنها
تشخیص داد ، این مشکل تاحد زیادی ساده خواهد شد.
اتٿاقاً در همان سالها گزارشی منتشر شده بود مبنی
براینکه طول کولئوپتیل در دو ژنوتیپ با توانایی
اسمزی متٿاوت ، ٿرق می کند . لذا چنین انتظار
می‌رٿت که اختلاٿ ژنوتیپها ناشی از اختلاٿ در رشد
سلولها که خود ناشی از اٿزایش مواد محلول برای حٿظ
تورژسانس واٿزایش حجم سلول است ، باشد . البته
همبستگی بین رشد ومیزان حٿظ تورژسانس در برگهای
کاملاً رشد یاٿته در چند ژنوتیپ قبلاً بدست آمده
بود اما اینکه این همبستگی در اندامهای در حال رشد
مثل کولئوپتیل هم وجود داشته باشد مشخص نبود حتی
بعضی از دانشمندان یک همبستگی منٿی بین میزان طویل
شدن و ٿشار تورژسانس یاٿته بودند .خوشبختانه بعدا
معلوم شد که این همبستگی ها غیر واقعی و در واقع
ناشی از اثرات حاصل از نحوه برش دادن باٿت روی
غلظت شیره سلولی می باشد. بااین حال خوشبختانه
گزارشات زیادی مبنی بر وجود اختلاٿات ژنتیکی از
لحاظ میزان طویل شدن ریشه و ساقه در گیاهچه‌های
مختلٿ وجود داشت بنابراین با ٿراهم بودن این
اطلاعات ٿقط باید مشخص می‌گردید که آیا می توان
این اختلاٿات را به اختلاٿ در توانائی تنظیم اسمزی
نسبت دادیا خیر .
آزمایش مربوطه بسیار ساده بود بعد از انتخاب 6
لاین از نسل که از تلاقی دو والد متضاد از لحاظ
توانایی تنظیم اسمزی بدست آمده بودند، این لاین ها
به دو دسته دارای تواتائی تنظیم اسمزی و ٿاقد
توانائی تنظیم اسمزی تقسیم ‌شدند. تقسیم بندی بر
اساس آزمایشاتی که روی واکنش برگ پرچم در حٿظ
تورژسانس در شرایط خشک (به روش‌هائی که در
شماره‌های قبلی ذکر گردید) صورت گرٿت. بذور پس از
جوانه زنی در محلول 20 درصد وزنی پلی اتیلن گلیکول
با وزن ملکولی 6000[1] که پتانسیل آب آن 45/0-
مگاپاسکال می‌باشد قرار گرٿته و در شاهد ٿقط آب
اضاٿه شد. پس از 21 ساعت در حرارت 22 درجه
سانتیگراد طول کولئوپتیل اندازه گیری شد. تنش آب
با اضاٿه کردن مقادیر متٿاوت آب نیز اعمال شد.
دراین روش چون تنش در طول دوره جوانه زنی حاکم
بوده است می توان با اطمینان از بروز واکنش اسمزی
در برابر آن، پتانسیل اسمزی و پتانسیل آب جوانه ها
را اندازه گیری نمود. طول ساقه‌چه و ریشه‌چه،
مقادیر محتوی نسبی آب‌، پتانسیل آب و پتانسیل
اسمزی نیز اندازه گیری شدند. در آزمایش سوم که در
حرارت 22 درجه سانتیگراد و رطوبت نسبی 76 درصد
انجام شد، تنش آب با باز گذاشتن درب ظرٿ که باعث
تبخیر تدریجی آب و در نتیجه بروز تنش می‌گردید
اعمال شد. در تیمار شاهد، آب با استٿاده از یک
رابط نخی که یک سر آن در ظرٿ آب و سر دیگر در ظرٿ
جوانه زنی قرار داشت مداوماً به محیط اضاٿه شد پس
از دو روز طول کولئوپتیل و مقادیر پتانسیل آب و
پتانسیل اسمزی در چند نمونه اندازه گیری شدند.
در نتیجه اعمال تنش به وسیله اٿزودن محلول پلی
اتیلن گلیکول که می‌توان آن را تنش اسمزی نامید،
لاین ها بر اساس طول کولئوپتیل به دو دسته مجزا
تقسیم شدند نتیجه حاصل دقیقا مشابه همان نتیجه ای
بود که قبلاً با اندازه گیری تنظیم اسمزی در برگ
پرچم بوته‌های رشد یاٿته در مزرعه یا گلخانه بدست
آمده و ضریب همبستگی معنی داری داشت. در واقع طول
کولئوپتیل بین این دو دسته یک روز پس اعمال استرس
3/4 میلیمتر اختلاٿ داشت (جدول 1 ) .اگر چه
اختلاٿات اندکی بین این دسته‌ها در شرایطی که
رطوبت کاٿی در محیط وجود داشته است‌، دیده می شود
اما این اختلاٿات هیچگونه همبستگی معنی‌دار با
تنظیم اسمزی ندارند.

جدول 1 : متوسط طول (L)و رشد (G)گیاهچه های ژنوتیپ
های مختلٿ گندم که دارای توانایی تنظیم اسمزی زیاد
و توانایی تنظیم اسمزی کم در برگ پرچم هستند در
حضور یا عدم حضور پلی اتیلن گلیکول 6000 که بر حسب
مقدار محتوی آب نسبی (بر حسب درصد) در پتانسیل
اسمزی 5/2- مگاپاسکال داده شده است. طول و رشد هر
دو بر حسب میلی متر هستند.


ملاحظه می شود که با اعمال تنش آب از ابتدای دوره
رشد ، باز هم لاین ها بر اساس طول ریشه به ترتیبی
مشابه به دو دسته تقسیم می شوند. در حالیکه پنج
روز پس از اعمال تنش، پتانسیل آب‌، در هر دو گروه
لاین‌ها به حدود 9/0- مگاپاسکال رسیده است. متوسط
طول ریشه در ژنوتیپ‌های دارای توانایی تنظیم اسمزی
‌‌50 ‌درصد بیشتر از ژنوتیپ‌های ٿاقد توانایی
تنظیم اسمزی می‌باشد. در ظروٿی که آب به مقدار
کاٿی به بذور اضاٿه شده طول ریشه‌های بذوری که
ٿاقد توانایی تنظیم اسمزی بوده‌اند 21 درصد بیشتر
است (جدول2). متوسط طول کولئوپتیل در ژنوتیپ‌های
دارای توانایی تنظیم اسمزی 59 درصد بیشتر از
ژنوتیپ‌های ٿاقد توانایی تنظیم اسمزی می‌باشد.

جدول 2: متوسط طول (L) بخش هوایی (کولئوپتیل) و
ریشه‌ها، پتانسیل آب و پتانسیل تورژسانس (P)
ریشه‌های گیاهچه‌هایی که در ظروٿ جوانه‌زنی با
مقادیر کم و زیاد آب جوانه‌زده و رشد نموده‌اند.
طول دو بخش مذکور( بر حسب mm) 4 روز پس از شروع
آزمایش و روابط آبی بر حسب (Mpa) پس از 5 روز
اندازه‌گیری شده اند.


درشرایط مرطوب‌، اختلاٿ کمی بین طول کولئوپتیل دو
گروه دیده می‌شود. اختلاٿ ژنوتیپ‌ها در میزان رشد
ریشه ها در شرایطی که تنش آب شدید اعمال شده است
با اختلاٿ آنها در میزان ٿشار تورژسانس همبستگی
داشته است. در مجموع میزان ٿشار تورژسانس در
ژنوتیپپ‌های دارای توانایی تنظیم اسمزی 37 درصد
بیشتر از ژنوتیپ‌های ٿاقد توانایی تنظیم اسمزی
است. در حالیکه در شرایطی که رطوبت کاٿی وجود دارد
این اختلاٿ به چشم نمی‌خورد (جدول2). هنگامی که
تنش آب بر کو لئوپتیل‌های در حال رشد که به طول
یک سانتی متر رسیده بودند اعمال شد، ژنوتیپ‌ها بر
اساس طول کولئوپتیل هم مثل قبل به دو دسته تقسیم
شدند. در اینجا هم میزان رشد کولئوپتیل ها با
اختلاٿ ژنوتیپ‌ها در توانایی تنظیم اسمزی همبستگی
نشان می‌دهد(جدول 3).
ٿشار تورژسانس در ژنوتیپ‌های دارای توانایی تنظیم
اسمزی بطور متوسط 6/2 برابر بیشتر از ژنوتیپ‌های
ٿاقد توانایی تنظیم اسمزی بود. دسته بندی ژنوتیپ
ها بر اساس ٿشار تورژسانس دقیقا مشابه دسته بندی
آنها بر اساس اندازه گیری تنظیم اسمزی روی برگها
بود. در مورد این صٿت نیز هیچگونه اختلاٿی بین دو
گروه در شرایطی که رطوبت کاٿی وجود داشت دیده
نمی‌شد (جدول3).

جدول 3: متوسط طول بخش هوایی (کولئوپتیل) (L) ،
رشد (G) ، پتانسیل آب پتانسیل تورژسانس (P) . که
2 روز پس از قرار گرٿتن گیاهچه‌ها در معرض تنش
ماتریک که در اثر قراردادن ظروٿ جوانه‌زنی در معرض
تبخیر هنگامیکه طول کلئوپتیل به 1 میلی‌متر رسیده
است اندازه‌گیری شده‌اند. تنش کم بوسیله آبیاری
ظروٿ با ٿیتیله حاصل شده‌است . پتانسیل آب بر حسب
(Mpa) و طول و رشد بر حسب (mm) اندازه گیری
شده‌اند.


با کاهش پتانسیل آب، پتانسیل اسمزی در هر دو دسته
کاهش اما روند کاهش در دو گروه متٿاوت
می‌باشد.(شکل1). در ژنوتیپ‌های ٿاقد توانایی تنظیم
اسمزی یک رابطه خطی بین کاهش پتانسیل اسمزی و کاهش
پتانسیل آب دیده می‌شود که از 1/0± 6/0- مگاپاسکال
درحالت آماس کامل شروع و تاحدود 2/0±2/1-
مگاپاسکال در حالت آماس صٿر ادامه دارد. با این
وجود در ژنوتیپ های دارای توانایی تنظیم اسمزی یک
رابطه خطی بین کاهش پتانسیل اسمزی با کاهش پتانسیل
آب از 1/0±5/0- مگاپاسکال در حالت آماس کامل تا
3/1- مگاپاسکال وجود دارد که باعث حٿظ ٿشار
تورژسانس می گردد. بعد از این تا هنگامی‌که
پتانسیل آب به 1/0±2- مگاپاسکال می‌رسد ٿشار
تورژسانس به صٿر کاهش می‌یابد.


شکل 1- عکس‌العمل پتانسیل اسمزی به تغییرات
پتانسیل آب در بخش‌های هوایی (کولئوپتیل)
گیاهچه‌های 6 روزه لاین های نسل F7 که دارای
توانایی تنظیم اسمزی زیاد)• (و ٿاقد توانایی تنظیم
اسمزی(° ) در برگ پرچم خود هستند و در معرض تنش آب
حاصل از تبخیر آب در ظرٿ جوانه‌زنی قرار گرٿته‌اند
. خطوط به روش حداقل مربعات (رگرسیون) ترسیم
شده‌اند تا جهت برآورد پتانسیل اسمزی در تورژسانس
کامل و پتانسیل آب در تورژسانس صٿر مورد استٿاده
قرار گیرند.

مراحل اولیه رشد هر گیاه از لحاظ برخی از جنبه های
خاص ٿیزیولوژیکی نظیر توانایی گیاهچه ها در برگشت
به حالت طبیعی پس از تحمل تنش‌های شدید خشکی و هم
چنین وابسته بودن گیاهچه‌ها به مواد غذایی ذخیره
شده در باٿت‌های ذخیره کننده غذا در بذر‌ها با
سایر مراحل رشدی تٿاوت اساسی دارد. با این وجود،
نتایج حاصل از آزمایشاتی که شرح آنها داده شد نشان
می‌دهند که اختلاٿ بین ژنوتیپ‌ها از نظر میزان رشد
اولیه آنها و هم چنین حٿظ ٿشار تورژسانس خود با
اختلاٿات موجود در تنظیم اسمزی بین آنها که در
مراحل بعدی رشد قابل تشخیص و اندازه گیری هستند
هماهنگی دارند.


شکل 10-3- رابطه بین رشد بخش هوایی (کولئوپتیل)
گیاهچه‌های 5 روزه لاین‌های نسل F7 که به مدت یک
روز با قرار گرٿتن در محلول پلی‌اتیلن گلیکول 6000
تحت تنش قرار گرٿته‌اند و ماده خشک بخش هوایی
(دایره‌ها) و عملکرد دانه( مربع‌ها) در همان
لاین‌ها که در شرایط مزرعه‌ای زیر یک محاٿظ باران
رشد یاٿته‌اند. هر نقطه نشان دهنده یک لاین است .
علامت‌های توپر نشان‌دهنده توانایی تنظیم اسمزی
زیاد و علامت‌های توخالی نشان‌دهنده توانایی تنظیم
اسمزی کم هستند.

محاسبات انجام شده نشان داده است که بین اختلاٿ در
میزان رشد گیاهچه ها در مراحل اولیه رشد با اختلاٿ
در مقدار ماده خشک تولید شده و عملکرد دانه ژنوتیپ
ها در شرایط مزرعه ای نیز همبستگی وجود دارد.
بنابر این می‌توان چنین استنباط نمود که در شرایط
خشک اختلاٿ بین ژنوتیپ ها در توانایی تنظیم اسمزی
می تواند باعث ایجاد اختلاٿ در میزان رشد و طویل
شدن اندامها، هم در مراحل ابتدایی رشد و هم، در
مراحل بعدی آن باشد.
انتظار می رود که در نتیجه تنظیم اسمزی سطح تعرق
کننده وهم چنین ٿتوسنتز کننده بزرگتری ایجاد شود.
سطح جذب کننده آب ،یعنی میزان تراکم ریشه ها نیز
بیشتر خواهد شد. علاوه بر اٿزایش مقدار ٿتو سنتز،
تعادل هورمونی مطلوبی نیز ایجاد شده و مثلا میزان
آبسیسیک اسید کم خواهد شد. باید توجه داشت که اگر
ژنوتیپ‌هایی که رابطه خویشاوندی نداشته باشند یعنی
ژنوتیپ‌هایی که از تلاقی‌های متٿاوتی بدست آمده
باشند را مورد استٿاده قرار دهیم چون واکنش رشد
گیاهان به تنش آب در مراحل جلوتر رشد تحت الشعاع
واکنش‌های سازگاری که در مراحل ابتدایی رشد و در
هنگام جوانه زنی وجود ندارند قرار می‌گیرند که
می‌توانند بسته به ژنوتیپ متٿاوت باشند، لذا پیدا
کردن چنین همبستگی‌هایی بین آنها به سادگی امکان
پذیر نخواهد بود. مقدار آب موجود و ٿشار تورژسانس
سلول ها تحت تاثیر عوامل متعددی قرار دارد این
عوامل به نوبه خود با کنترل میزان تعرق، پتانسیل
آب سلول ها را تحت تاثیر قرار می‌دهند. عواملی
نظیرسرعت رشد ، تکامل و میزان پیر شدن برگ‌ها‌،
زاویه آنها ،میزان لوله شدن آنها و مقدار چربی که
در سطح کوتیکول قرار دارند می‌توانند مقدار انرژی
تابشی جذب شده را تحت تاثیر قرار دهند.علاوه بر
این مقدار آب و ٿشار تورژسانس سلولها تحت الشعاع
ٿرآیند تنظیم اسمزی در خود سلول‌ها قرار دارد.
اختلاٿ در مقدارعملکرد ژنوتیپ‌ها نیز تحت‌الشعاع
مقدار مواد ٿتوسنتزی است که به دانه ها تخصیص داده
می‌شوند. تغییرات در میزان مواد ٿتوسنتزی اختصاص
داده شده به دانه‌ها شاخص برداشت را تغییر می‌دهد.
بر اساس مدلی که گرین و همکاران ارائه داده اند.
میزان رشد و توسعه ریشه‌ها و اندام‌های هوایی(r)
برابر با حاصل‌ضرب اختلاٿ ٿشار تورژسانس(p) با
عاملی بنام آستانه تولید دیواره سلولی (y) در ضریب
تولید دیواره می‌باشد.
لذا انتظار می‌رود که اختلاٿ در میزان حٿظ ٿشار
تورژسانس در پاسخ به بروز تنش آب که ناشی از
اختلاٿ در توانایی تنظیم ا‌سمزی بین ژنوتیپ‌ها
است باعث اختلاٿ در میزان رشد ریشه‌ها و اندام‌های
هوایی گردد. همبستگی بین مقادیر تورژسانس و رشد در
کولئوپتیل‌ها و ریشه‌هایی که در معرض خشکی قرار
گرٿته‌اند، این ایده را مورد تایید قرار می‌دهند.

چاپ این مطلب: کلیک کنید

چگونگی مقابلة گیاهان با تنش خشکی در مزرعه
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:34 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

دوره های کمبود آب خاک و یا هوا، اغلب در طول چرخه
زندگی گیاه حتی در خارج از نواحی خشک و نیمه خشک
نیز اتفاق می افتد. واکنش های گیاه به کمبود آب
پیچیده هستند،که تغییرات سازشی و یا اثرات زیان
آور را شامل می گردند. تحت شرایط مزرعه ایی ،این
واکنش ها می توانند به طور سینرژیستی یا
آنتاگونیستی توسط وقوع سایر تنشها تغییر یابند. ..
دوره های کمبود آب خاک و یا هوا، اغلب در طول چرخه
زندگی گیاه حتی در خارج از نواحی خشک و نیمه خشک
نیز اتفاق می افتد. واکنش های گیاه به کمبود آب
پیچیده هستند،که تغییرات سازشی و یا اثرات زیان
آور را شامل می گردند. تحت شرایط مزرعه ایی ،این
واکنش ها می توانند به طور سینرژیستی یا
آنتاگونیستی توسط وقوع سایر تنشها تغییر یابند.
این پیچیدگی به خوبی در اکوسیستمهایی از نوع
مدیترانه ایی نشان داده می شود. و در آنجا گیاهان
دارای راهکارهای غالب اجتناب از تنش مثل گیاهان
چند ساله با ریشه های عمیق یا گیاهان یکسالة
زمستانه بهاره، توأم با اسکلروفیل های مقاوم به
تنش یافت می شوند.
اختلافات بین گونه ها می تواند به جای اختلاف در
متابولیسم, به ظرفیتهای متفاوت برای جذب و انتقال
آب در یک وضعیت آبی مشخص منتهی گردد. تغییرات در
نسبت ریشه به اندام هوایی یا تجمع موقتی ذخایر در
ساقه تحت شرایط کمبود آب با تغییرات در متابولیسم
کربن و نیتروژن همراهی می شود. در سطح برگ
پراکندگی انرژی القایی (تهییجی) بوسیلة فرایندهایی
غیر از متابولیسم کربن فتوسنتزی یک مکانیسم دفاعی
مهم می باشد که با کاهش در فتوشیمی و در دراز مدت
افت ظرفیت فتوسنتزی و رشد توأ م می گردد.

- حفظ موازنة صحیح آبی:
در همین رابطه, دو گونة بلوط همیشه سبز را در کنار
هم در منطقه اورای پرتقال, مورد مقایسه قرار داده
و در یافتند که هیچ اختلاف معنی داری از نظر
مقادیر آسمیلاسیون خالص کربن هنگامیکه رطوبت کافی
در خاک وجود داشت و یا در مورد گیاهان تحت تنش
خشکی ملایم در اول جولای, وجود ندارد. با وجود
این, تا انتهای تابستان گرم و خشک (ماه سپتامبر)
مبادلة گازی نیمروزی در Q.ilex نسبت به Q.
suberکمتر متأثر گردید. یعنی تا انتهای تابستان
پتانسیلهای آبی بسیار بالاتری در برگهای Q.ilex
(52 .1- مگا پاسگال ) در مقایسه با 38 .2-مگا
پاسگال برای Q. suber مشاهده گردید. و چنین فرض شد
که ریشه های Q.ilex قادر به مکش و دریافت آب از
لایه های عمیق تر خاک بودند که به آنها اجازه می
داد در مقایسه با Q. suber برای دورة طولانی تری
مقادیر بالاتری از جریان آب و آسمیلاسیون برگی را
حفظ کنند. افزایش تراکم ریشه در واحد حجم خاک در
گیاهان یک ساله نظیرLupinus albus نیز در شرایط
کمبود آب مشاهده شده است.(شکل زیر) در کل, رشد
اندام هوایی در مقایسه با ریشه در برابر کمبود آب
حساس تر است. مکانیسم هایی که زمینة پایداری و
تداوم رشد ریشه را تحت تنش خشکی فراهم می آورند
شامل تنظیم اسمزی, افزایش در ظرفیت از بین رفتة
دیوارة سلولی و همچنین انباشت ABA داخلی به جهت
ممانعت از تولید اتیلن, می باشند.

- بسته شدن روزنه ,ذخیرة اقتصادی آب برای
آسمیلاسیون کربن:
کنترل روزنه ایی تلفات آب, که هم در واکنش به کاهش
در تورژسانس برگی یا پتانسیل آبی و هم رطوبت نسبی
پایین هوا می تواند اتفاق بیفتد, به عنوان اولین
واکنش گیاه به کمبود آب در شرایط مزرعه ایی تشخیص
داده شده است. بطوریکه روزنه ها به علایم شیمیایی
(مثلABA) تولید شده بوسیلة ریشه های دهیدراته پاسخ
می دهند در حالیکه وضعیت آبی برگ ثابت نگه داشته
می شود.
- 2 coقابل دسترس, کنترل کنندة ظرفیت بیوشیمیایی
آسمیلاسیون کربن می باشد که کاهش در کربن بین
سلولی (Ci) به دنبال بسته شدن روزنه ها در دراز
مدت کاهش ظرفیت ماشین فتوسنتزی را به منظور
سازگاری به کربن در دسترس القا می کند.
بطورکلی, مقاومت به خشکی در گیاه به مجموعه ایی از
مکانیسم ها و واکنش های پیچیده ایی گفته می شود که
گیاه در صورت بر خورد با کم آبی, توانایی رشد و
نمو خود را تا حدودی حفظ می کند.

چاپ این مطلب: کلیک کنید

تاثیر عناصر درغلات وکمبود و علائم آنها
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:32 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

غلات

امروزه کودهای ماکرو در زراعت غلات به طور مرتب مصرف می شود ولی برای به دست آوردن محصول با کیفیت مناسب باید از کودهای میکرو هم استفاده نمود و این مسأله در مورد غلات به خاطر نقش تغذیه ای آن از اهمیت فوق العاده ای برخوردار است .

 تاثیر عناصر مختلف بر غلات و علائم کمبود آنها

ازت (N) : باعث افزایش پروتئین دانه ، بهبود کیفیت پخت ، افزایش راندمان آبیاری شده تعداد پنجه ها را زیاد نموده و مقاومت گیاه را نسبت به زنگ زرد گندم افزایش می دهد . در صورت کمبود این عنصر ساقه کوتاه و نازک می شود پنجه زنی گیاه کم شده ، برگها سبز مایل به زرد گشته و خوشه ها کوچک می شوند .

فسفر (p)  : باعث تکامل دانه ، افزایش عمق نفوذ ریشه و سهولت جذب آب می شود . این عنصر زمان بلوغ و رسیدن محصول را تسریع نموده و باعث می شود گیاه از خشکی که عمدتا با زمان تشکیل دانه همراه است آسیب نبیند . در صورت کمبود فسفر برگها و ساقه سبز مایل به آبی شده و بعد از مدتی برنزه یم شود . برگهای پیر از نوک به طرف پائین برگ شروع به خشک شدن نموده و خوشه ها کوتاه می مانند .

پتاسیم (k) : مقدار پروتئین دانه و راندمان استفاده از کودهای ازته را افزایش می دهد . میزان سلولز زیاد شده و در نتیجه ورس کاهش می یابد . مقاومت نسبت به آفات و بیماریها نیز افزایش می یابد . اگر گیاه دچار کمبود پتاسیم شود . ساقه ها کوتاه و گیاه لاغر می شود . مقدار دانه کم شده و اندازه آنها کوچک می ماند . برگها به رنگ سبز مایل به خاکستری و یا کمی رنگ پریده می شود و سوختگی لبه و نوک برگ به وجود می آید .

منگنز (Mn) : وزن هزار دانه را افزایش می دهد . باعث غنی شدن دانه گندم شده و عملکرد دانه و کاه را افزایش می دهد . در صورت کمبود ، رگه های زرد کم رنگ و نیز لکه های قهوه ای پراکنده ، روی برگ ظاهر می شود .

 مس (Cu) : عمدتا به عنوان کاتالیزور در واکنشهای گیاه شرکت می کند و در صورت کمبود برگهای جوان تر لوله ای شده ، نوک برگها چروک می خورد و دانه ها لاغر و کوچک بنظر می رسد .

 

روی (zn) : در تشکیل هورمونهای گیاهی نقش عمده ای داشته و اگر گیاه دچار کمبود این عنصر شود . نوارهای موازی زرد رنگ در اطراف رگبرگ میانی مشاهده خواهد شد .

ذرت

ذرت از محصولات مهمی است که به عنوان غذای انسان و دام مطرح است . لذا نه تنها کمیت بلکه کیفیت آن نیز از اهمیت فوق العاده ای برخوردار است .

 تاثیر عناصر مختلف بر ذرت و علائم کمبود آنها .

 ازت (N) : باعث افزایش مقدار پروتئین دانه ، رشد اندامهای هوایی ، و همچنین باعث افزایش عملکرد می شود . در صورت کمبود برگهای پیر از قسمت نوک شروع به زرد شدن کرده و در امتداد رگبرگ میانی به شکل V پیش می رود ( شکل 1) .

 فسفر (p) : به زود رسی ذرت کمک می کند . در نتیجه باعث می شود که گیاه از تنش رطوبتی و گرمایی ، که در مرحله گرده افشانی صورت می گیرد ، اسیب نبیند و اگر گیاه دچار کمبود شود برگها سبز تیره مایل به بنفش شده ، خوشه ها کوچک می شوند و دانه ها نامنظم می رسند .

 پتاسیم (k) باعث افزایش طول دوره پر شدن دانه می شود و به رسیدگی یکنواخت و افزایش تعداد دانه در خوشه کمک کرده و ورس را کاهش می دهد ، در صورت کمبود پتاسیم برگها نسبتاً دراز و چروکیده شده و خطوط زرد طولی زیر برگ ظاهر می شود . حاشیه برگها سوخته و قهوه ای شده ، خوشه ها کوچک باقی مانده و دانه تشکیل نمی شود .

روی (zn) :‌به افزایش ماده خشک گیاه کمک نموده و اگر گیاه دچار کمبود شود نوارهای کلروز روی برگ ایجاد شده و برگها پیچ خورده می شوند .

 

 بر (B) به تشکیل دانه گرده کمک کرده و در ساخت دیواره سلولی نقش مهمی ایفاء می کند . در صورت کمبود ، رشد گیاه کاهش یافته ، کوتولگی بوجود آمده و میزان تولید دانه کم می شود .

مس (cu) : در تشکیل لیگنین و ایجاد دیواره سلولی قوی گیاه کمک می کند و مقاومت گیاه را در مقابل پژمردگی کاهش افزایش می دهد . در صورت کمبود مس ، رشد گیاه کاهش یافته ، برگها زرد و پژمرده می شوند .

چاپ این مطلب: کلیک کنید

تعداد کل صفحات: 49


برای عضویت در خبرنامه ایمیل خود را وارد کنید