X
تبلیغات
رایتل
دسته‌بندی آب وخاک - سبز نیوز
مطالب کاربردی گیاهان زینتی.گیاهان دارویی.کشت قارچ.کشت گلخانه ای.تراریوم و بونسای
گرفتن وام گلخانه
تنش محیطی
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 03:02 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )


تنش یا استرس Stress ، واژه‎ای است که اولین بار توسط دانشمندان علوم بیولوژیک در مورد موجودات زنده بکار برده شد. بعدها این واژه از علم فیزیک گرفته شده و آن را به عنوان هر عاملی که امکان بالقوه وارد آوردن صدمه به موجودات زنده را دارد تعریف نمودند. تنش، نتیجه روند غیرعادی فرآیندهای فیزیولوژیکی است که از تأثیر یک یا ترکیبی از عوامل زیستی و محیطی حاصل می‎شود. همان طوری که در تعریف آمده، تنش دارای توان آسیب‎رسانی می‎باشد که به صورت نتیجه یک متابولیسم غیرعادی روی داده و ممکن است به صورت افت رشد، مرگ گیاه و یا مرگ بخشی از گیاه بروز کند (حکمت شعار، 1372).

تنش‎های محیطی را معمولاً به دو دسته تقسیم کرده‎اند: تنش‎های بیولوژیکی Biotic stress و تنش‎های فیزیکوشیمیایی Physiochemical stress.

تنش‎های بیولوژیکی شامل حمله آفات و امراض به گیاهان می‎باشد که در محدوده بحث ما نیست. تنش‎های فیزیکوشیمیایی به پنج گروه تقسیم می‎شوند که از بین آن‎ها، خسارت وارده به گیاهان زراعی در اثر تنش‎های کمبود آب، شوری و دما در سطح جهان گسترده‎تر بوده و به همین جهت بیشتر مورد مطالعه قرار گرفته‎اند (Levitt, 1980).

خشکی و وضعیت جهانی آن
واژه خشکی یک اصطلاح هواشناسی بوده و بیان‎گر دوره‎ای است که در آن مقدار بارندگی کمتر از مقدار تبخیر و تعرق بالقوه شود. چون کمبود باران باعث تنش کمبود آب خواهد شد، لذا واژه تنش خشکی Drought stress برای مواردی که تنش در اثر عدم وقوع بارندگی مفید ایجاد شده است بکار می‎رود و بعبارت دیگر، در این حالت تنش کمبود آب[1] به طور طبیعی مد نظر است. اگر گیاه به طور مصنوعی تحت شرایط تنش رطوبتی قرار گیرد در این صورت واژه تنش کمبود آب بکار برده می‎شود. چنانچه در اثر خشکی هوا، رطوبت داخلی گیاه به کمتر از 50% مقدار عادی خود برسد در این صورت گیاه دچار آبکشیدگی Water deficit stress شده و چنانچه رطوبت داخلی گیاه کمتر از مقدار عادی ولی بالاتر از 50% باشد پسآبیدگی Evaporative dehydration گویند (سرمدنیا، 1374).میزان خسارت وارده به گیاه در اثر تنش خشکی، بسته به طول مدت خشکی، زمان وقوع تنش، فراوانی وقوع تنش، نوع گیاه و خصوصیات ذاتی خاک متفاوت است.در حدود یک سوم اراضی جهان با کمبود بارندگی مواجه ا ند و نیمی از این اراضی دارای بارندگی سالیانه کمتر از 250 میلیمتر می‎باشند که یک چهارم تبخیر و تعرق بالقوه این مناطق است. به طور کلی مناطق خشک و نیمه خشک جهان در محدوده‎های بین عرض‎های جغرافیایی 15 تا 30 درجه شمالی و جنوبی قرار گرفته‎اند و وسعتی در حدود 7/44 میلیون کیلومتر مربع را شامل می‎شوند. حدود 39% از این مساحت جزء مناطق خشک محسوب می‎گردد که قسمت عمده آن برای زراعت مساعد نیست (کوچکی و نصیری محلاتی، 1373).در مناطق خشک و نیمه خشک علاوه بر میزان بارندگی کم، توزیع بارندگی از فصلی تا فصل دیگر و از سالی به سال دیگر متغیر بوده و بنابراین پیش‎بینی میزان و توزیع آن بسیار مشکل است (اهدایی، 1372).در کشور ما نیز به جز سواحل دریای خزر و قسمت‎های کوچکی از شمال غربی کشور بقیه مناطق تماماً جزء نقاط خشک و نیمه خشک محسوب می‎گردند و این در حالی است که مناطق خشک کشورمان نسبت به مناطق نیمه خشک آن، از وسعت بیشتری برخوردار است (اهدایی، 1372).

تنش خشکی
به طور کلی به هر عامل خارجی که نتیجه‎اش نرخ رشد کمتر از حد معمول باشد، تنش گرفته می‎شود یعنی هر عاملی که مراحل متابولیک طبیعی یک گیاه را به وقفه می‎اندازد، محدود می‎کند یا به طور زیان‎آوری تسریع می‎کند (Guriu et al ., 1996) .تنش آبی هم به عدم وجود آب کافی هم به وجود آب اضافه در اطراف گیاه گفته می‎شود. در حالت اول که در نتیجه خشکی و یا کمبود آب بوجود می‎آید تحت عنوان تنش کمبود آب شناخته می‎شود که با تنش خشکی مترادف است (سرمدنیا ، 1372) .

کرامر (1983) خشکی را تحت عنوان نبود یا کمبود بارندگی مراحل حساس رشد گیاه، تعریف نموده است، به عقیده وی طول دوره بدون بارندگی که موجب صدمه به گیاه می‎شود، تابع نوع گیاه، ظرفیت نگهداری آب، خاک و همچنین شرایط اتمسفری است که بر میزان تبخیر و تعرق تأثیر می گذارد .

وینز ( 1990 ) خشکی را دورهای که کمبود آب چه بصورت حاد و چه بصورت مزمن رشد گیاه را تحت تاثیر قرار می دهد و مانع رشد نرمال آن می‎شود، تعریف می‎نماید.

گیبس (1975) خشکی را معادل کمبود آب در نظر گرفته و آن را به مفهوم عدم توزان بین عرضه و تقاضا آب برای گیاه تلقی می‎کند.

رایج‎ترین تعریف خشکی در کشاورزی توسط آدمیدس و همکاران (1989) مطرح شده است. آنها معتقدند که کمبود یا تنش رطوبت هنگامی افزایش می‎یابد که تقاضای تبخیر اتمسفر بالای برگها (یعنی تبخیر و تعرق پتانسیل) ETP از ظرفیت و توانایی ریشه‎ها برای استخراج آب از خاک (یعنی تبخیر و تعرق واقعی) ETA تجاوز نموده و فراتر می‎رود. در کشاورزی منظور از خشکی کمبود آب بصورت طبیعی است. اگر گیاه بطور مصنوعی در معرض تنش آب قرار داده شود، واژه «تنش کمبود آب» ETA بکار می‎رود. در نهایت در مورد گیاه زراعی خشکی را می‎توان بعنوان عدم تعادل بین عرضه و تقاضای آب تعریف کرد . چنانچه در اثر خشکی هوا رطوبت داخلی گیاه کمتر از 50 درصد مقدار عادی خود شود، گویند گیاه دچار «کمبود آب» Water Dessication یا از دست دادن آب شده است و چنانچه رطوبت گیاه کمتر از مقدار عادی خود ولی بالاتر از 50 درصد مقدار عادی باشد «گیاه پسابیده» Evaporative Dehidration شده است. تنش خشکی که موجب از دست دادن آب بصورت مایع شود را تنش اسمزی گویند. بنابراین تنش خشکی به تنهایی مفهوم دقیقی ندارد. (سرمدنیا ، 1372 ) .

انواع خشکی
نوع خشکی در مناطق مختلف در طول فصل زراعی متفاوت است و ممکن است :

1ـ پیوسته بوده و شدت آن دائماً زیاد شود.

2ـ فقط در اوایل فصل باشد .

3ـ فقط در اواخر فصل مصادف با دوره دانه‎بندی گندم باشد (ارزانی ، 1375 ) .

اثرات استرس خشکی در مراحل مختلف رشد گندم
اثرات استرس خشکی در مراحل مختلف رشد روی کاهش عملکرد دانه گندم را نشان می‎دهد فعالیت بذر بعد از جذب آب و خیس شدن شروع می‎شود میزان جذب آب بوسیله بذر بستگی به مقدار آب در خاک و تفاوت بین گونه‎های گیاهی دارد. حداقل مقدار رطوبت برای جوانه‎زنی 34 الی 45 درصد وزن خشک دانه می‎باشد. جوانه‎ها در مراحل اولیه رشد مقاوم به خشکی هستند ولی این مقاومت با تشکیل اولین برگ به مقدار زیادی کاهش می‎یابد. جوانه‎زنی به عنوان یک معیار مناسب در عملکرد دانه می‎تواند در پتانسیل آب پائین‎تر از 4- بار تحت تأثیر قرار گیرد. بذور سبز شده یا جوانه‎های خیلی جوان توانایی زیادی برای تنظیم اسمزی دارند که شاید دلیل مقاومت آنها در برابر استرس و خشکی باشد.معمولاً قبل از اینکه فتوسنتز متأثر شود، توسعه و تقسیم سلولی می‎تواند بطور نسبی تحت تأثیر استرس خشکی قرار گیرد. این مسئله اثر عمیقی روی توسعه برگها و ساقه‎های گیاه رشد یافته می‎گذارد. خشکی بطور نسبی تا مرحله پنجه‎زنی اثرات شدیدی ندارد. دلیل این تفاوت در زمان توسعه پنجه‎ها در مزرعه و در توزیع مجدد آب ذخیره شده در گیاه در زمان خشکی می‎باشد اما استرس خشکی اثر قابل ملاحظه‎ای روی رشد بعدی پنجه‎ها دارد. تعداد پنجه‎های باقی مانده بستگی به فراهم بودن آب دارد (Musick et al ., 1980).پس بطور کلی کمترین اثر استرس آبی و حرارت در طی مرحله پنجه‎زنی و بیشترین اثر آن در طی مدت بین طویل شدن ساقه و مرحله آنتزیز (ظهور پرچم) است ( Johanson et al , 1982 ). استرس در طی مراحل اولیه ایجاد سنبله می‎تواند تعداد سنبله‎های تشکیل شده را کاهش دهد. اثر استرس آب در اغلب مراحل رشد بین شروع سنبل‎‎دهی و رسیدن، در کاهش معنی‎دار عملکرد دانه مشابه می‎باشد (Musick et al ., 1980).

تنش خشکی در طی 12 هفته آخر قبل از ظهور سنبله می‎تواند همچنین تعداد دانه در هر سنبله را کاهش دهد که این حالت در نتیجه کاهش آسیمیلاتهای قابل دسترس جهت توسعه گلدهی می‎باشد. در طی پر شدن دانه اگر خشکی وجود نداشته باشد ممکن است بواسطه افزایش اندازه بذر چند درجه از کمبودها جبران شود. عملکرد دانه براساس مقدار رشد و استفاده از آب قبل و بعد از مرحله ظهور پرچم متفاوت است. در شرایطی که خشکی قبل از مرحله ظهور پرچم تقویت شود، ژنوتیپها شاخص سطح برگ را کاهش می‎دهند، تا آب بیشتری برای استفاده مراحل بعد از ظهور پرچم ذخیره شده تا شاخص برداشت و عملکرد دانه بالا رود، در خشکترین شرایط بیش از 60% وزن خشک از ذخایر موجود در مرحله ظهور پرچم تأمین می‎شود بعد از پریود ظهور پرچم حساسیت توسعه دانه گندم به کمبود آب کاهش می‎یابد (Musick et al ., 1980). بعد از مرحله باروری زمانیکه ماکزیمم تعداد بذر تثبیت شد، استرس آب در تعداد نهایی و اندازه بذر که عملکرد بذر را مشخص می‎کند تأثیر می‏گذارد. بیشتر اثرات خشکی در طی این مدت باعث کاهش ذخائر آسیمیلات به علت کاهش میزان فتوسنتز و کوتاه شدن دوره رشد بذر می‎باشد .


--------------------------------------------------------------------------------




انواع مکانیسم‎های مقاومت به خشکی
بیشتر متخصصین اصلاح نباتات از پنج اصلاح در ارتباط با مقاومت بر خشکی استفاده می‎کنند :

1ـ مقاومت به خشکی : (drought resistance )توانایی یک گیاه در زنده ماندن، رشد و تولید عملکرد رضایتبخش با مقدار محدود عرضه آب و یا تحت شرایط کمبود متناوب آب.

2ـ فرار از خشکی :توانایی گیاه در بالغ شدن پیش از آنکه تنش آبی تبدیل به یک عامل محدود کننده جدی شود.

3ـ اجتناب از خشکی:گیاه در طول دوره خشکی خود مقادیر بالای آب را حفظ می‎کند.

بنظر لویت اجتناب کنندگان از خشکی خود به دو دسته ذخیره‎کنندگان آب و مصرف کنندگان آب تقسیم می‎شوند. گیاهانی که از خشکی اجتناب می‎کنند سازشهایی نشان می‎دهند که منجر به حصول حداکثر مقدار آب می‎گردد یا اینکه فعالیتهای خود را به دوره‎های در دسترس بودن آب محدود می‎کنند (فرار از خشکی )(Malik et al , 1988).

4ـ تحمل خشکی :توانایی گیاه در تحمل کمبود آب که بوسیله درجه و دوام پتانسیل پایین آب گیاه اندازه‎گیری می‎گردد. در واقع مکانیسم تحمل به خشکی زمانی صورت می‎گیرد که از نظر ترمودینامیکی گیاه با تنشی به حالت تعادل می‎رسد، بدون اینکه آسیبی را متحمل شود و یا در صورت آسیب‏‎دیدگی قابلیت ترمیم را داراست (.,1997 et al Gavuzzi And .,1993 Ehdaie et al ). با این مکانیسم گیاه ممکن است با وجود رطوبت داخلی کم زنده بماند. گیاهی که دارای این مکانیسم باشد قادر است تا با تأمین رطوبت، مجدداً بهبود یافته و رشد کند. در مجموع لویت مکانیسم‎ مقاومت به خشکی را به مکانیسم‎های گریز از خشکی، اجتناب از خشکی و تحمل به خشکی تقسیم نمود (, 1980. Musick et al ) .

5- بازیافت (بهبود ) : توانایی گیاه برای از سرگیری رشد و عملکرد بعد از استرس خشکی البته با یک min خسارت عملکرد است .

مکانیسم‎های گریز از خشکی :

1 ـ زودرسی یا دوره رشد کوتاه
احتمالاً زودرسی معمولترین و ساده‎ترین صفت برای اصلاح مقاومت به خشکی است. زودرسی این قابلیت را به گیاه می‎دهد که عملکرد خود را پیش از شروع خشکی ارائه نماید (.,1989 et al Arraudeau Laing et Al ., 1983 And ). وقوع تنش خشکی باعث زودرسی نسبی می‎گردد. بطور کلی ژنوتیپ‎های بومی دیررس‎تر از ارقام اصلاح شده‎اند ولیکن با افزایش شدت تنش این اختلاف کاهش می‎یابد ( Fischer And R. Maurer . 1978 ) . ژنوتیپ‏های زودرس که رشد سریعتری دارند، بیشتر آبهای در دسترس را مصرف می‎کنند و لذا کمتر از ژنوتیپ‎های کند رشد و دیررس در معرض تنشهای محیطی قرار می‎گیرند. و بخاطر این کمتر تحت تأثیر اثر نامطلوب تنش خشکی قرار می‎گیرند که این موجب تولید زی توده بیشتری می‎گردد. تولید ارقام زودرس آسان است، زیرا که عموماً وراثت‎پذیری بالایی دارد و ارزیابی آن نیز آسان است.

2 - حساسیت به طول روز
حساسیت به طول دوره نوری ویژگی دیگری است که به شدت وراثت‎پذیر است و انتخاب برای آن نیز آسان است حساسیت به طول روز یک مکانیسم انطباقی برای تاریخهای کاشت است. نامتحمل است که بتوان در یک برنامه اصلاحی حساسیت به طول روز را بطور موفقیت‎آمیزی به یک گیاه زراعی وارد کرد. مسئله بسیار مهمتر این است که سازش حساسیت به فتوپریود در گیاه، در طی برنامه اصلاحی از بین نرود ( Bidinger et al . 1978 ).

3ـ کنترل پنجه‎دهی
پنجه‎دهی تحت کنترل ژنتیکی است و دیده شده که بیشتر ژنوتیپ‎های غلات تنوع زیادی برای این صفت دارند. اگر با استفاده از فضای زیاد کشت و کنترل متغیرهای محیطی، مثل رطوبت و حاصلخیزی که روی پنجه‎دهی اثر می‎گذارند، به این صفت اجازه دهیم تا خود را بیان کند، در اینصورت منطقاً پنجه‎دهی وراثت‎پذیری بالایی دارد( Bidinger et al . 1978 ). در گندم و جو میزان محصول بالاتر و ثابت‎تر از ژنوتیپ‎های یا پنجه‎دهی بالا بدست آمده است. بنظر می‎رسد پنجه‎دهی از حساسیت عملکرد نسبت به تراکم بوته می‎کاهد (سرمدنیا ، 1372). هارد (1971) عقیده دارد که در نواحی خشک توان‎ پنجه‎دهی را یک عاملی ناخواسته است. زیرا باعث هدر رفتن رطوبتی می‎شود که ممکن است بعداً در مراحل بحرانی مورد نیاز باشد. البته دو ویژگی دیگر یعنی مراحل نموی کوتاه (مانند دوره رشد دانه یا سایر دوره‎های رشدی گیاه) و انعطاف‎پذیری فنوتیپی هم از جمله مکانیسم‎های گریز از خشکی می‎باشد.

مکانیسم‎های اجتناب
1ـ سیستم ریشه‎ای توسعه یافته :

سیستم ریشه‎ای هر چقدر که فعالتر و توسعه یافته‎تر باشد باعث می‎گردد که میزان آبی که در کل در دسترس گیاه و اندامهای آن قرار می‎گیرد، افزایش یابد، و بهمین خاطر است وقتی گیاهان در تحت شرایط تنش قرار می‎گیرد نسبت وزن خشک ریشه به ساقه افزایش می‎یابد که علت این پدیده بخاطر تخصیص بیشتر ماده خشک به ریشه، جهت دوری گیاه از خشکی می‎باشد. افلاطونی (1369) در طی انجام یک تحقیق به منظور یافتن ارقام مقاوم به خشکی در مرحله گیاهچه‎ای، مشاهده کرد که ارقام مقاومتر به تنش خشکی طول و وزن خشک ریشه بیشتری داشتند ( افلاطونی ، 1369).گسترش ریشه بستگی به تأمین مواد جهت رشد آن، حفظ رطوبت به اندازه کافی، تأمین اکسیژن کافی، درجه حرارت مناسب و کمی موانع مکانیکی دارد (راشد و کوچکی ، 1373) .

2ـ هدایت روزنه‎ای :

روزنه‎ها از جمله عوامل مهم در از دست دادن آب گیاه می‎باشند، بطوریکه در هنگامی که گیاه تحت شرایط تنش قرار می‎گیرد گیاه با بستن روزنه‎هایش تلفات کاهش آب از طریق روزنه‎ها را کاهش می‎دهد. عمل بسته شدن روزنه‎ها بوسیله عوامل مختلف در گیاه کنترل می‎گردد بنحویکه یکی از مهمترین این عوامل آبسیزیک اسید (ABA) است. این هورمون تنظیم کننده رشد گیاهی در اثر تنش خشکی تحریک و میزان آن افزایش می‎یابد. بعد از افزایش این هورمون در بافتها و سلولهای گیاهی یکی از مسیرهایی که این هورمون جهت مقاومت گیاه یا تحمل گیاه به خشکی طی می‎کند، مسیری است که موجب کنترل و بسته شدن روزنه‎ها توسط ABA می‎گردد.باز شدن روزنه‎ها نتیجه افزایش پتانسیل فشاری سلولهای محافظ روزنه‎ها نسبت به سلولهای اطراف آن می‎باشد. تعرق هنگامی صورت می‎گیرد که بخار آب از طریق روزنه به بیرون منتشر شود. تنش آب می‎تواند موجب کاهش اندازه شکاف روزنه شود. برخی موارد شیمیایی مانند آترازین، سیمازین و دیدرون نیز باعث مسدود شدن روزنه می‎گردند. این مواد موجب کاهش مصرف آب و رشد می‎گردند (راشد و کوچکی ،1373 ).

از آنجا که وراثت‎پذیری میزان هدایت روزنه‎ای معلوم نیست، اندازه‎گیری آن مشکل است و حتی مقدار آن در طول روز تغییرات زیادی دارد، بعید است در برنامه‎های اصلاحی کاربرد زیادی پیدا کند( Bidinger et al . 1978 ).

3ـ اندازه و فراوانی روزنه‎ها
بسیاری از گیاهان زراعی که تحت شرایط نور مستقیم خورشید رشد می‎کنند در هر دو سطح برگ دارای روزنه هستند، لیکن در بسیاری از گونه‎های سایه‎زی، روزنه‎ها تنها در سطح زیرین برگ وجود دارند. بعلت نفوذناپذیری نسبی کوتیکول نسبت به آب حدود 90 درصد تعرق از راه روزنه‎ها صورت می‎گیرد. تعداد و اندازه روزنه‎ها که متأثر از ژنوتیپ و محیط‎اند، در مقایسه با باز و بسته شدنشان تأثیر کمتری بر میزان کل تعرق می‎گذارند (سرمدنیا و کوچکی ، 1374). تراکم روزنه‎ها در سطح رویی برگ گندم 33 و برای سطح زیرین آن 14 روزنه بر میلیمتر مربع می‎باشد (سرمدنیا و کوچکی ، 1374). اهدائی (1372) تراکم کم روزنه‎ها را صفتی با تنوع ژنتیکی و سهولت انتخاب متوسط می‎داند.

4ـ تجمع آبسیسیک اسید
اسید آبسیسیک از طریق مسیر موالونیک اسید در برگها (کلروپلاست و سایر پلاسیتدها) ساخته شده و این فرآیند با تنشهای محیطی بویژه تنش خشکی تحریک می‎گردد. ABA مانند علامت دهنده عمل کرده و در فرآیند عادی فیزیولوژیکی نیز دخالت می‎کند.فرآیندهایی که تحت تأثیر آبسیسیک اسید قرار می‎گیرد عبارتند از:

الف ـ باعث بسته شدن روزنه‎ها در تحت شرایط تنش می‎شود.

ب ـ بعنوان علامت دهنده تنش خشکی عمل می کند.

ج ـ مقاومت در برابر تنشهای خشکی، شوری و سرما را موجب می‎گردد. موجب رکود، ریزش، رشد و زمین‎گرایی می‎شود (Anders And Busk . 1996).افزایش میزان آبسیسیک اسید، فرآیندی است که عموماً پس از تنشهای محیطی غیرزنده از جمله تنش خشکی، شوری و سرما به چشم می‎خورد، بطوریکه این افزایش احتمالاً رابطه‎ای با تحمل به خشکی دارد و در جلوگیری از پسابیدگی سلولها در گیاهان دخالت می کند (Kazuo And Yamaguehi . 1999 ).بسیاری از سازشهای مرفولوژیکی و فیزیولوژیکی در مقابل تنش خشکی در تحت کنترل هورمون گیاهی ABA می‎باشد (28). بیشتر ژنهایی که تا به امروز مطالعه و بررسی شده‎اند، آنهایی که در اثر تنش خشکی تحریک می‎گردند، اکثراً تحت تأثیر ABA قرار می‎گیرند که به این ژنها، ژنهای وابسته به آبسیسیک اسید می‎گویند. بنظر می‎رسد که پسابیدگی و کاهش تورژسانی سلولها سبب تولید ABA متعاقباً تأثیرABA در تجلی ژنهای گوناگونی می‎شود (Anders And Busk . 1996). مطالعات نشان داده‎اند که نحوه توراث این صفت بصورت کمی است. اکسین و سیتوکینین تأثیری خلاف اثر ABA دارند و موجب باز شدن روزنه‎ها می‎شوند.

5ـ ضخامت کوتیکول و قشر مومی روی برگ
قشر مومی روی برگ نفوذپذیری آنرا برای آب ودی‎اکسیدکربن کاهش می‎دهد. و نیز میزان تابش جذب شده را کم می‎کند. بسیاری از گیاهان در نواحی خشک، از نظر تشریحی برگهایی با بشره ضخیم دارند. کوتیکول ضخیم بصورت عایقی در برابر تشعشع ورودی عمل می‎کند و در نتیجه تعرق را کاهش می‎دهد و بهمراه آن از تبخیر کوتیکولی نیز می‎کاهد (راشد و کوچکی ، 1373). مومی بودن در گندم بوسیله یک ژن بزرگ اثر کنترل می‎شود و ژنهای کوچک اثر روی شدت آن تأثیر می‎گذارند . کلارک و همکاران (1991) گزارش کردند که مومی بودن سطح برگ بطور مثبتی با عملکرد تنش خشکی همبسته بوده و کارائی مصرف آب را بالا می برد. قاعدتاً وراثت‎پذیری صفت مومی بودن باید بالا باشد. موم برگ تحت تأثیر عوامل بیرونی مانند تنش آب، دمای بالاو تشعشع زیاد نیز قرار می‎گیرد.

مکانیسم‎های تحمل به خشکی
1ـ تنظیم فشار اسمزی :

تنطیم اسمزی متضمن افزایش تعداد مولکولهای محلول درون سلولها در پاسخ به کاهش پتانسیل آب خارجی است. اثر این عمل، کاهش جریان خروجی آب از سلول و از این طریق باعث کاهش تلفات تورژسانسی می‎شود( Bidinger et al . 1978 ). تنظیم فشار اسمزی یکی از خصوصیات مهم تحمل گیاهان به خشکی است که در طی 15 سال اخیر به آن توجه زیادی شده است و مفهوم آن عبارتست از پائین رفتن پتانسیل اسمزی در پاسخ به تنش آب است که این امر ممکن است به دو طریق ذیل صورت گیرد:

الف ـ تنظیم غیر فعال: که در نتیجه تحمل مقدار آب نسبی بافت است.

ب ـ تنظیم فعال: که بوسیله تجمع املاح یا متابولیت‎ها یا بوسیله کاهش گسترش حجم سلول صورت می‎گیرد. بطور کلی، تحت شرایط تنش آب، فتوسنتز نسبت به مصرف آسمیلات‎ها در طول رشد کمتر تحت تأثیر قرار می‎گیرد و بنابراین قندها (اغلب به جزء نشاسته) و بقیه محصولات متابولیکی انباشته می‎شوند، هر چند که اهمیت نسبی آنها در تنظیم اسمزی بستگی به گونه، بافت و سرعت خشکی دارد. شواهد غیرمستقیمی در زمینه نقش تنظیم اسمزی در مقاومت به خشکی و تولید محصولات گیاهی از منابع متعدد در دست است. مورگان (1983) دست به انتخاب گندمهائی زد که در شرایط تنش، تنظیم اسمزی بالا و یا پایینی داشتند. طبق بررسیهای عملکرد ژنوتیپ‎های واحد تنظیم اسمزی بالا در شرایط خشکی بهتر از ژنوتیپ‎های کم پتانسیل بود (عبد میشانی و بوشهری ، 1374) . گزینش برای حفظ آماس و یا تعرق بوسیله تنظیم اسمزی و یا سایر عوامل گیاهی قابل انجام است و در حال حاضر توسط چند روش سریع و غیرمستقیم عملی می‎شود.

2ـ تجمع پرولین
تجمع پرولین آزاد در واکنش به تنش آبی در سلولهای بسیاری از گیاهان زراعی صورت می‎گیرد. ساربی و همکاران (1995) گزارش کردند که تحت تنش خشکی بوته‎های گندم به تجمع گلیسین، سوکروز، بتائین، والین، پرولین، آسپارژین و گلوتامین پرداختند که در این میان میزان تجمع پرولین بیشتر از بقیه بود. تجمع پرولین صفتی است که کارهای زیادی روی آن برای انتخاب این صفت بعنوان یک معیاری برای مقاومت صورت گرفته است که متأسفانه جواب مطلوبی در مجموع بدست نیامده است.اندریو و همکاران (1977) در آزمایش بر روی دو رقم، یکی مقاوم و دیگری حساس به خشکی، نتیجه گرفتند که احتمال دارد در گزارشات مبتنی بر وجود همبستگی مثبت بین پتانسیل تجمع پرولین و مقاومت به خشکی در جو نادرست باشد. در مطالعه دیگری بر روی گندم نیز همبستگی معنی‎داری بین مقاومت به خشکی و غلظت پرولین برگ در زمان پر شدن دانه وجود نداشت ( Guiru et al . 1996).

3ـ جابجایی مواد پرورده
قبل از گلدهی گندم مقدار زیادی کربوهیدراتهای غیرساختمانی در ساقه آن بویژه در دو میانگره انتهایی (پدانکل) و میانگره ماقبل پدانکل ذخیره می‎شود که پس از اینکه گیاه وارد مرحله رشد زایشی و تشکیل دانه می‎گردد، این مخازن نقش زیادی در پر شدن دانه ایفا می‎کنند. چگونگی ظرفیت ذخیره‎ای ساقه و بازدهی انتقال کربوهیدراتهای ذخیره شده قبل از گلدهی به دانه، هنوز در گندم مطالعه نشده است.سه مکانیسم، گریز، اجتناب و تحمل به خشکی باعث ایجاد مقاومت گیاهان به تنش خشکی می‎گردند که این مقاومت، ممکن است حاصل مجموع این سه مکانیسم یا یکی یا دو تا از آنها باشد.

انتخاب برای مقاومت به خشکی:

صفاتی مانند ممانعت در از دست دهی آب و تحمل به از دست‎دهی آب بطور مثبت با عملکرد تحت استرس ژنوتیپهای گندم و جو ارتباط دارند (Acevedo et al , 1989). ممانعت در از دست‎دهی آب به عنوان توانایی ژنوتیپها برای نگهداری بالای پتانسیل آبی برگ موقعی که تحت کمبود آب خاک رشد می‎کنند تعبیر می‎شود. تعدادی از صفات که در این فرآیند دخالت دارند عبارتند از: لوله‎ای شدن برگ، بهترین سیستم ریشه سازگار، افزایش کرک اندامهای هوایی، افزایش انعکاس تشعشع ورودی خورشید، افزایش پراکندگی گرما به واسطه کاهش مقاومت لایه مرزی در سطح اندام (برگهای باریک و ریشکها) و غیره.شکل مهم تحمل به استرس خشکی تحمل به استرس بعد از گلدهی است. در گندم و همانطور در غلات دیگر پرشدن دانه‎ قسمتی به طول مدت فتوسنتز واقعی و قسمتی به کربوهیدراتهای ذخیره شده در طول دوره قبل از گلدهی که از اندامهای رویشی گیاه جابجا می‎شوند بستگی دارد. تحت شرایط استرس خشکی انتهائی فتوسنتز خالص بطور معنی‎داری کاهش می‎یابد و سهم انتقال کربوهیدراتهای قابل حل ذخیره شده به عنوان منبع برای پر کردن دانه در گندم بیشتر می‎شود (Austin , 1977).مقدار 60-40% از وزن نهایی دانه از کربوهیدراتهای ذخیره شده قبل از گلدهی منشأ می‎گیرند که بوسیله محققان گزارش شده است . تنوع ژنتیکی در داخل گونه‎های گیاهی غلات در توانایی برای نگهداری رشد دانه بوسیله تحرک مجدد منابع کربوهیدراتی وجود دارد (Acevedo et al , 1989 And Austin , 1977). بلام و همکاران (1983) یک تکنیک اسکرین را برای این صفت در گندم توسعه دادند، آنها به طور کامل گیاهان آبداده را با منیزیم کلرات در آغاز مرحله فاز خطی رشد دانه (تقریباً 14 روز بعد از گلدهی) موقعیکه تعداد سلول‎ نهایی دانه مشخص شده بود اسپری کردند. این ماده خشک کننده همه بافتهای فتوسنتز کننده شامل برگها و غلافهای برگ، گلوم و ریشک را از کار انداخت. وزن دانه در پلاتهای تیمار شده با پلاتهای تیمار نشده مقایسه شد.

شاخصهای انتخاب برای مقاومت به خشکی
1ـ بررسی شاخصهای پیشنهاد شده
معیارهای انتخاب زیادی که برای افزایش مقاومت به خشکی گیاهان زراعی پیشنهاد شده‎اند اگرچه به طریقی با پیشبرد عملکرد این گیاهان در نواحی خشک ارتباط دارند ولی اکثراً ناموفق بوده‎اند. دلایل این عدم موفقیت عبارتند از:

الف ـ معیارهای پیشنهاد شده بیشتر با مکانیسم‎های زنده ماندن گیاه تحت شرایط تنش خشکی رابطه دارند تا با تولید محصول.

ب ـ معیارها مناسب محیط هدف نیستند.

ج ـ معیارهای خاصی مراحل رشدی معین بوده و بنابراین کمتر با رشد و تولید عملکرد در طول سیکل کامل زندگی گیاه ارتباط دارند. از طرفی برخی از آنها به خوبی تعریف نشده و اندازه‎‎گیری آنها مشکل می‎باشد (ریچارد 96). بلوم (1988) بیان می‎کند که ژنوتیپ‎هایی که عملکرد بالا دارند ممکن است مقاوم به تنش خشکی نباشند و بالا بردن عملکرد آنها ممکن است صرفاً به دلیل پتانسیل بالای عملکرد آنها باشد نه دارا بودن مکانیسم‎های تحمل. ولی ریچارد (1989) عقیده دارد که انتخاب برای عملکرد در غیاب خشکی راه بسیار مؤثری برای اصلاح و پیشبرد عملکرد در نواحی خشک می‎باشد. دلیل آن این است که پتانسیل عملکرد بالا که در مناطق مطلوب بروز می‎کند، می‎تواند عملکرد خوب در مناطق نامطلوب را باعث شود. همچنین انتخاب برای عملکرد در محیطهای مطلوب بصورت مشخصی مؤثرتر از نواحی نامطلوب است چرا که تنوع ژنتیکی به دلیل کوچک شدن خطاها ماکزیمم بوده و اثرات متقابل ژنوتیپ و محیط نیز به دلیل تکرار پذیری بیشتر محیطها کوچکتر است. علاوه بر این ریچارد عقیده دارد که انتخاب برای عملکرد بصورت اتوماتیک تمامی فاکتورهای ناشناخته‎ای را که برای افزایش مقاومت به خشکی مهم هستند در گیاه جمع می‎کند. 2ـ شاخص‎های نشان دهنده مقاومت به خشکی براساس عملکرد ژنوتیپ‎هاخصوصیات مهم یک شاخص جهت اینکه معیار خوبی برای بررسی و بیان مقاومت به خشکی باشد عبارتست از:

الف ـ بین شاخص مورد نظر و عملکرد همبستگی بالایی وجود داشته باشد.

ب ـ وجود تنوع ژنتیکی زیادی برای صفت مورد نظر در جمعیت مورد مطالعه یا بعبارت دیگر صفت دارای توارث پذیری بالایی باشد.

ج ـ صفت مورد نظر مشخص و تعریف شده و اندازه گیری آن راحت، دقیق و سریع باشد، بطوریکه عمل جداسازی مقدار زیادی ژنوتیپ بر اساس آن با سرعت و به راحتی صورت بگیرد.فرناندز (1992) در بررسی عملکرد ژنوتیپ‎ها در دو محیط تنش و بدون تنش تظاهر گیاهان نسبت به دو محیط را به 4 گروه تقسیم نمود:

1ـ ژنوتیپ‎هایی که تظاهر یکسانی در محیط تنش و غیر تنش دارند (گروه A).

2ـ ژنوتیپ‎هایی که فقط تظاهر خوبی در محیط بدون تنش دارا هستند (گروه B).

3ـ ژنوتیپ‎هایی که در محیط تنش عملکرد بالایی دارند (گروه C).

4ـ ژنوتیپ‎هایی که تظاهر ضعیفی در هر دو محیط دارند (گروه D).

به عقیده فرناندز مناسبترین معیار انتخاب برای تنش معیاری است که بتواند گروه A را از سایر گروهها تشخیص دهد. اصطلاحات مربوط به شاخص‎های مقاومت به خشکی عبارتند از:

128.jpg


بر اساس این اصطلاحات شاخص‎های متفاوت را بدین صورت تجزیه و تحلیل می‎نمائیم:


اولین شاخص مورد نظر، «شاخص حساسیت به تنش

Susceptibility Index) Stress= SSI) است که در سال 1978 توسط فیشر و مورو محاسبه و پیشنهاد گردید و بصورت رابطه زیر است:

213.jpg

در فرمول فوق SI معادل شدت تنش Stress Index می‎باشد. که هر چقدر SI مقدار کمتری داشته باشد SSI مقدار بیشتری خواهد داشت. بطورکلی هرچه میزان این شاخص کمتر باشد یعنی حساسیت ژنوتیپ به تنش کمتر است و مقاومت آن بیشتر می‎باشد. انتخاب بر اساس شاخص SSI باعث گزینش ژنوتیپ‎هایی با عملکرد پایین در شرایط عادی ولی عملکرد بالا در شرایط محیط تنش می‎گردد. پس عیب عمده‎ای که این شاخص دارد قادر به شناسایی گروه A از گروه C نیست.

رزبل و هامبلین در سال ( 1981 ) شاخص تحمل


314.jpg



هرچه اختلاف بین YPو YS بیشتر باشد مقدار TOL افزایش می‎یابد و این نمایانگر حساسیت بیشتر به خشکی بوده و هر قدر مقادیر این شاخص پایین‎تر باشد، مطلوب‎تر خواهد بود. گزینش براساس این شاخص سبب انتخاب ژنوتیپ‎هایی با عملکرد بالقوه پایین تحت شرایط بدون تنش و عملکرد بالا تحت شرایط تنش می‎گردد. پس این شاخص هم قادر به جداسازی گروه A از C نمی‎باشد. شاخص محصول دهی متوسط (MP) نیز باعث گزینش ژنوتیپ‎هایی می‎شود که عملکرد بالایی در شرایط مطلوب دارند ولی از عملکرد کمی در شرایط نامطلوب برخوردارند.

در سال ( 1992 ) فرناندز شاخص STI = Stress Tolerance Index) را تحت عنوان شاخص تحمل به تنش را پیشنهاد کرد تا جهت شناسایی ژنوتیپ‎هایی با عملکرد بالا تحت هر دو محیط تنش و بدون تنش مورد استفاده قرار گیرد این شاخص بصورت زیر محاسبه می‎گردد:


513.jpg




هر چقدر مقدار STI بالاتر باشد، نشان دهنده تحمل به خشکی بالاتر آن ژنوتیپ ویژه است که این امر موجب بالا رفتن عملکرد بالقوه بیشتر آن ژنوتیپ می‎گردد. در این شاخص ژنوتیپ‎های گروه A از گروه B و C تفکیک می‎شود.
میانگین هندسی محصول دهی نیز بعنوان شاخص

( GMP = Geometric Mean Productivity )


در سال ( 1992 ) توسط فرناندز معرفی گردید که عبارتست از:

152.jpg

GMP حساسیت کمتری به مقادیر بسیار متفاوت YS و YP دارد در حالیکه شاخص MP که بر اساس میانگین حسابی می‎باشد، هنگامیکه اختلاف نسبی زیادی بین YS و YP باشد دارای اریبی به طرف بالا خواهد بود. بنابراین شاخص GMP در مقایسه با شاخص MP قدرت بالاتری در تفکیک گروه A از سایر گروهها دارد و بر همین اساس بود که فرناندز شاخص STI خود را بر اساس GMP بنا گذاشت.
611.jpg

بدینگر و همکاران (1978)، شاخص پاسخ به خشکی


(DRI= Drought Response Index )

را پیشنهاد نمودند که بر اساس رابطه زیر می‎باشد.
YA= تخمین عملکرد از طریق رگرسیون تحت شرایط تنش
YES= عملکرد حقیقی تحت شرایط تنش
SES= اشتباه استاندارد رگرسیون چند متغیره

DRI= ( YA- YES) / SES

در این روش یک رگرسیون چند متغیره از عملکرد دانه تحت شرایط تنش روی عملکرد دانه تحت شرایط بدون تنش و همچنین تعداد روز تا گلدهی برای تمامی کولیتوارها بسته می‎شود و سپس DRI برای هر رقم با استفاده از رابط فوق محاسبه می‎شود. ارزشهای مثبت DRI نشانگر تحمل به خشکی بوده که مستقل از اثرات عملکرد بالقوه و تاریخ گلدهی است. DRI متناسب با 1ـSI در فرمول فیشر و مورو می‎باشد.


فیشر و همکاران ( 1983)، مفهوم شاخص خشکی یا

(DI = Dorought Index )


را به عنوان معیاری برای غربال ژنوتیپ‎های ذرت معرفی کرد. DI نسبت وزن بذر لاینهای تحت تنش به شرایط بدون تنش می‎باشد. به منظور تعیین وجود ژنوتیپ‎های متحمل در داخل گروهی از لاینها شاخص خشکی نسبی( = Relative Dorought Index (RDI بر اساس رابطه زیر قابل محاسبه است که DI شاخص خشکی می‎باشد.

711.jpg


پس ژنوتیپ‎هایی که دارای RDI بزرگتر از یک می‎باشند، دارای مقاومت نسبی به خشکی بوده و

اگر ارزش فوق کوچکتر از یک باشد، ژنوتیپ مربوطه دارای حساسیت نسبی به خشکی می‎باشد

چاپ این مطلب: کلیک کنید

تغذیه گیاهی در خاک های شور
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 03:00 ب.ظ | نوشته ‌شده به دست علیزاده | ( 17 نظر )

شوری و سدیمی بودن خاک

شوری و سدیمی بودن خاک یکی از مشکلات مهم خاکهای مناطق خشک و نیمه خشک است. در این مناطق بدلیل کمبود بارندگی و اقلیم خشک، املاح در خاک تجمع پیدا میکنند و در نتیجه خاکهای شور حاصل می‌شود. این خاک محیط نامناسبی برای رشد و تولید بوده که هم کمیت محصول را پائین میآورد و هم کیفیت محصول را کاهش می‌دهد.

طبق آمار %۱۵ سطح کل کشور ما را خاکهای شور و چیزی حدود %۵۰ خاکها قابل بهرهبرداری و آبیاری می‌باشند.

بطور کلی خاکهای شور دارای مقدار زیادی املاح محلول هستند که این نمک زیاد مشکلاتی را برای گیاه بوجود میآورد.

شوری خاک چگونه تعیین می‌شود؟

شوری خاک را براساس پارامتری بنام E.C. یا قابلیت هدایت الکتریکی مشخص میکنند. هدایتسنج الکتریکی، دستگاهی است که قابلیت هدایت الکتریکی محلول خاک یا E.C. را اندازهگیری می‌کند. خاکهایی که E.C. آن‌ها بیشتر از Ds/m  ۴ باشد جزء خاکهای شور طبقهبندی می‌شوند.

2.تحمل درختچه‌ها و درختان زینتی نسبت به شوری 

نام گیاه

حداکثر مجاز E.C. (Ds/m)

نام گیاه

حداکثر مجاز E.C. (Ds/m)

یاسمن

2-1

کاج سیاه

6-4

گل رز

3-2

نعلب درختی

6-4

لاله درختی

3-2

اوکالیپتوس

8-6

عَشَقه

4-3

خرزهره

8-6

بداغ 

4-3

نخل بادبزنی

8-6

توری

4-3

دراسیتا

8-6

ماگنولیا

6-4

گل کاغذی

8>

شمشاد

6-4

گل یخ

8>

 

 

حساسیت گیاهان به شوری خاک

گیاهان نسبت به شوری خاک حساسیت متفاوتی دارند و بعضی میتوانند شوری را تحمل کنند که به آن‌ها اصطلاحاً گیاهان متحمل به شوری گفته می‌شود. بعضی دیگر نسبت به شوری خاک حساس هستند که جزء گیاهان حساس محسوب می‌شوند. گل‌ها و گیاهان زینتی جزء گیاهان حساس به شوری قلمداد می‌شوند.

 3.اثرات شوری روی رشد گیاه

شوری خاک از چند طریق رشد گیاه را دچار محدودیت میکند:

1- آب قابل استفاده گیاه را کاهش میدهد؛ به عبارت دیگر در خاکهای شور، گیاهان زودتر دچار پژمردگی می‌شوند که این پدیده را اصطلاحاً خشکی فیزیولوژیکی میگویند. زیرا بدلیل شور بودن خاک، گیاهان نمیتوانند آب درون خاک را جذب کنند.

2-  مسمومیت؛ بعضی از یونها به مقدار زیاد در خاکهای شور وجود دارند و بر اثر جذب زیادشان توسط گیاه، برای آن ایجاد مسمومیت میکنند که از مهمترین آن‌ها می توان کلر،سدیم و بر را نام برد.

3- عدم تعادل تغذیهای؛ در خاکهای شور بدلیل وجود زیاد بعضی از یونها تغذیه گیاه، دچار مشکل می‌شود. بعنوان مثال در یک خاک شور، بدلیل غلظت زیاد کلر در محلول خاک و جذب آن بوسیله‌ی گیاه، جذب نیترات و سولفات توسط گیاه کم می‌شود. در صورتیکه نیترات و سولفات از یون‌های بسیار ضروری در تغذیه گیاه هستند. یا بعنوان مثال، جذب زیاد سدیم توسط گیاه، باعث کاهش جذب پتاسیم می‌شود.

نوع دیگری از خاکهای دارای املاح زیاد اصطلاحاً خاکهای سدیمی گفته می‌شوند یعنی خاکهایی که درصد سدیم تبادلی آن‌ها زیاد است.

 

بطور کلی، ما خاکها را بر اساس سه پارامتر E.C.،PH ،ESP  و یا درصد سدیم تبادلی طبقهبندی میکنیم.

 

4. طبقه‌بندی خاک‌های متاثر از املاح براساس Eph, Esp, Ec

نوع خاک

ph

Esp

Ec(Dsm-1)

شور

4 > 8/5

15<

<

سدیمی

4<

15>

8/5>

شور و سدیمی

4>

15>

8/5<

مصنوعی

4<

15<

8/5>

                                                           

 

خاکهای شور، خاکهایی هستند که E.C. آن‌ها بزرگتر از ۴ و ESP یا درصد سدیم تبادلی شان بیشتر از ۱۵ و PH  کمتر از ۵/ 8 دارند.

خاکهای سدیمی E.C. کمتر از ۴ و ESP بیشتر از ۱۵ و PH بیشتر از ۸/۵ دارند.

 

 

5.اصلاح خاکهای شور

راههای متفاوتی برای اصلاح خاکهای شور و سدیمی وجود دارد که به شرح ذیل است :

1- اساس اصلاح خاکهای شور، آبشویی است. یعنی از طریق مصرف آب اضافی، نمکهای محلول را از خاک شست و شو می‌دهیم؛

 

2- اما روشهای دیگری هست که اثرات سوء شوری را کاهش می دهند که مدیریت بهره برداری از خاکهای شور گفته می‌شود. بعنوان مثال، در خاکهای شور باید دور آبیاری را کوتاهتر بگیریم به عبارت دیگر آبیاری زود به زود  انجام شود تا غلظت املاح در خاک افزایش پیدا نکند؛

 

3- همچنین در خاکهای شور، باید از کودهایی استفاده بکنیم که اصطلاحاً ضریب شوری پائینتری داشته باشند یعنی کود خاک را شورتر نکند؛

 

4- استفاده از مواد آلی در خاکهای شور؛

5- استفاده از سیستم مناسب کشت و کار که اثرات شوری را کم کند؛

6- تغییر روش آبیاری.

 

اصلاح خاکهای سدیمی که ESPبالایی دارند با اصلاح خاکهای شور متفاوت است، در این خاک ها باید یکسری مواد شیمیایی اصلاح کننده به خاک اضافه بکنیم. مهمترین و بهترین موادی را که می توان در خاکهای کشور ایران استفاده کرد گچ یا گوگرد میباشد. گچ همان سولفات کلسیم است. به عبارت دیگر دارای عنصر کلسیم است. این کلسیم روی سطح ذرات خاک، جانشین سدیم می‌شود و سدیم را از سطح ذرات خارج کرده و وارد محلول خاک میکند و بعداً از طریق آبشویی، سدیم اضافی خارج می‌شود.

 

اما زمانی که گوگرد استفاده میکنیم گوگرد توسط یک باکتری بنام تیوباسیلوس دبو اکسیدانس در خاک اکسید می‌شود و تولید اسید سولفوریک میکند. اسید سولفوریک بر روی آهک خاک اثر کرده و تولید گچ میکند و گچی که بدین ترتیب تولید می‌شود کار اصلاح را انجام میدهد.

 

 

6.مقاومت گیاهان مختلف به درصد سدیم تبادلی خاک ESP

مقاومت

مقدار Esp

بسیار حساس

10-2

حساس

20-10

نیمه مقاوم

40-20

مقاوم

60-40

 

 نقش روی در کاهش تنش شوری 7.

شوری در ایران و بسیاری از مناطق خشک و نیمه خشک جهان عامل محدود کنندة رشد و نمو گیاهان زراعی است. براساس آمار موجود، سطح کلی خاکهای شور در اراضی ایران 33/7 میلیون هکتار برآورد شده است (مؤمنی، 1380). شوری خاک به روشهای متعدد در عملکرد محصول اثر می‌گذارد. از مهم‌ترین آثار شوری می‌توان به کاهش آب قابل استفاده گیاه، ایجاد مسمومیت توسط برخی یونهای سمی، فعالیت اندک در گیاه، ناهنجاریهای تغذیه‌ای، کاهش رشد و کیفیت محصول اشاره نمود. در شرایط شور، غلظت سدیم ) معمولاً بیش از غلظت عناصر غذایی پر مصرف و کم مصرف بوده و این امر موجب می‌شود در گیاهان تحت تنش شوری، عدم تعادل تغذیه‌ای از جهات گوناگون بروز کند. مطالعات انجام شده بیانگر این است که بخش عمدة مشکلات تغذیه‌ای گیاهان در شرایط شور، از طریق تغییر در قابلیت استفاده عناصر غذایی به صورت زیر ایجاد می‌شود (همایی، 1381).

  از طریق ایجاد اختلال در جذب و توزیع عناصر غذایی توسط ریشه‌ها و یا کاهش رشد آنها از طریق ایجاد اختلال در جذب توزیع عناصر غذایی توسط ریشه‌ها و یا کاهش رشد آنها از طریق مختل کردن متابولیسم عناصر غذایی در درون گیاه که به طور عمده مربوط به کاهش جذب آب توسط گیاه است. بدین ترتیب شوری می‌تواند با تأثیر بر شکلهای شیمیایی عنصر غذایی در خاک، انتقال، یا توزیع عناصر غذایی درون گیاه و یا غیر فعال نمودن تأثیرات فیزیولوژیکی عنصر غذایی مصرف شده، منجر به افزایش ذاتی نیاز غذایی گیاه گردد.

   قدم اول در بررسی وضعیت حاصلخیزی خاکها، تخمین صحیح میزان عنصر قابل جذب گیاه است. از آن جایی که روی (Zn) یکی از عناصر ضروری گیاه بوده و کمبود آن معمولاً در اوایل فصل رشد گیاه مشاهده ‌می‌شود، وضعیت عنصر روی قبل از کشت و تعیین مقدار روی مورد نیاز گیاه بسیار مهم است. بدین منظور از روشهای عصاره‌گیری متفاوتی برای استخراج روی استفاده می‌شود. این روشها براساس استفاده از اسیدهای آلی و معدنی یا کمپلکسهای گوناگون برای عصاره‌گیری و سپس اندازه‌گیری عنصر روی در عصاره استوار است. تعیین این که کدام یک از روشهای عصاره‌گیری بهترین همبستگی را با عکس‌العمل گیاه (غلظت جذب عنصر، عملکرد مطلق و عملکرد نسبی) خواهد داشت، بیشترین به ویژگیهای خاک و همچنین گیاه مربوط است؛ در نتیجه سبب خواهد شد که در شرایط خاکی متفاوت، روشهای مختلفی مورد استفاده قرار گیرد (کشاورز، 1375). در بین عوامل مؤثر بر روی (Zn)

قابل استفادة گیاه، اثر شوری به درستی شناخته نشده است و احتمال دارد تفسیر نتایج تجزیه خاک برای روی قابل جذب گیاه در خاکهای شور و غیر شور، یکسان نباشد (حسینی و کریمیان، 1378). از این رو می‌بایست مرزهای جداگانه‌ای برای تفسیر نتایج تجزیه خاک، مخصوص خاکهای شور پایه گذاری کرد (ملکوتی و نفیسی، 1373). قبلاً در برخی مطالعات نشان داده شده است که در خاکهای شور، مصرف مقادیر بالاتر عنصر روی موجب افزایش تحمل گیاه به شوری و عملکرد آن می‌شود. در این ارتباط سؤالات اساسی زیر مطرح است:

   آیا شوری موجب تغییردر نگهداری وتثبیت روی درخاک‌خواهد شد؟ و آیا این موضوع موجب تفاوت در روش استخراج روی از خاک در شرایط شور نسبت به شرایط غیر شور خواهد گردید؟

   آیا شوری موجب اختلال در جذب و یا توزیع روی توسط ریشه‌ها شده و در مورد قابلیت استفاده روی تأثیر می‌گذارد؟

   تا چه اندازه‌ای نقش تغذیه‌ای روی در بهبود شرایط رشد گیاهان در خاکهای شور مؤثر است؟

 قابلیت استفاده روی در شرایط شور

  روی از جمله عناصر ضروری و کم مصرف برای گیاهان است که به صورت کاتیون دو ظرفیتی (Zn)    جذب می‌شود. این عنصر یا به عنوان بخشی از ساختمان آنزیمهای به کار می‌رود و یا به صورت کوفاکتورهای تنظیم کننده در تعداد زیادی از آنزیمها عمل می‌کند. روی در گیاهان حداقل در ساختمان چهار آنزیم کربنیک آنهیدراز، الکل دهیدروناژ، سوپراکسید  دیسموتاز و  پلی‌مزار به کار رفته است. این عنصر برای ساخته شدن ایندول استیک اسید از ترپتوفان ضروری می‌باشد. کمبود ) مانع از سنتز پروتئین و متابولیسم کربوهیدراتها نیز می‌شود. همچنین تراوایی غشائ پلاسمایی در گیاهان مبتلا به کمبود روی، افزایش یافته و منجر به خروج پتاسیم، نیترات و ترکیبات آلی از سلول ریشه می‌گیرد.

   مطالعه شکلهای شیمیایی روی در خاک به منظور ارزیابی قابلیت استفاده آن برای گیاه در کشاورزی و برای تغیین میزان تحرک در خاک حائز اهمیت فراوان است. بر این اساس. مقدار عنصر روی کل خاک به اجزاء متمایز زیر تقسیم می‌شود. این جزءها عبارتند از:

1 ـ یونهای آزاد Zn   ) ) و کمپلکسهای آلی آن در محلول خاک

2 ـ روی جذب سطحی شده و تبادلی در فاز کلوئیدی خاک

3 ـ کانیهای ثانویه و کمپلکسهای نامحلول در فاز جامد خاک

با توجه به خواص فیزیکی و شیمیایی خاک، قابلیت استفاده از روی متفاوت است. در بین عوامل مؤثر بر روی قابل استفاده گیاه، به طور عمده عواملی چون میزان کل روی، ، مواد آلی، کربنات کلسیم، محلهای جذب، فعالیت میکروبی و رژیم رطوبتی خاک نقش مهمی را ایفا می‌کنند، ولی سایر عوامل نظیر شرایط اقلیمی، شوری و اثرات متقابل روی و سایر عناصر کم مصرف و پر مصرف نیز مهم هستند. با این وجود، مطالعات اندکی در رابطه با اثر شوری خاک بر تغذیه گیاهان از جهت عنصر کم مصرف روی انجام شده است. در این ارتباط اثر سمی بور عموماً شناخته شده است ولی رفتار آهن )، منگنز ) و روی Zn) ) در خاکهای شور کاملاً شناخته نشده است.    در شرایط شور قابلیت استفاده عناصر غذایی به غلظت و ترکیب نمک بستگی دارد. علاوه بر این، با توجه به واکنش نمک PH) )، قدرت یونی و ضریب فعالیت نمک، اثر شوری بر حلّالیت عناصر غذایی متفاوت است. نمکهایی که هیدورلیز شده و سبب تغییر می‌شوند، می‌توانند تغییرات بیشتری را در این شرایط سبب گردند. فعالیت یونی نمک نیز بر حلّالیت کربناتهای خاک و گچ تأثیر می‌گذارد. این موضوع سبب خواهد شد که تغییراتی در اشکال عناصر غذایی در خاک و قابلیت استفادة آن به وجودآید.

برخی مطالعات نشان داده است که میزان روی قابل استفاده با افزایش شوری (نمک ) زیاد می‌شود. دلیل این موضوع جایگزینی روی Zn) ) قابل تبادل با سدیم Na) ) اعلام شده است. از سوی دیگر طی دو آزمایش جداگانه در خاکهای شور و سدیک، مشاهده شد که حلّالیت عناصر کم مصرف Mn, Cu,Fe,Zn) ) فوق‌العاده کم بوده و کاهش در حلّالیت این عناصر، موجب کمبود آن در گیاهان می‌شود. در این ارتباط، حسینی و کریمیان (1378) طی بررسی خود بر روی اثر شوری در عصار‌ه‌پذیری روی قابل استفاده گیاهی با چهار سطح روی (0 , 10   و 15 میلی‌گرم در کیلوگرم خاک به صورت Zn- EDTA) ) و پنج سطح شوری (0 , 3/4 6 و 9/7 میلی‌گرم کلرید سدیم در هر کیلو‌گرم خاک) به سه روش عصاره‌گیری  به این نتیجه رسیدند که افزایش میزان شوری خاک موجب عصاره‌پذیری بیشتر روی بومی خاک می‌گردد. ولی عصاره‌پذیری روی مصرفی با افزایش شوری خاک کاهش می‌یابد. این موضوع به ویژه در عصاره‌گیر محسوس‌تر بود. با این وجود، در شرایط شور جذب عناصر غذایی به دلیل کاهش حجم ریشه و خاصیت آنتاگونیسمی بین عناصر غذایی و یونهای سمی کاهش می‌یابد. در این رابطه  و همکاران (2001) اعلام نمودند که با افزایش شوری، نسبت اندام هوایی به ریشه افزایش یافته و حجم ریشه کاهش می‌یابد. علاوه بر این، آنها کاهش جذب عناصر کم مصرف را در شرایط شور، ناشی از جذب بیشتر عناصری چون Ca,Na,Mg دانسته‌اند. شوری موجب تغییرات ساختمانی در ساقه، ریشه و برگ و گیاهان نیز می‌شود؛ به طوری که گیاهان تحت تنش شوری، دسته‌های آوندی کمتر و با قطر کوچکتری دارند، ولی در مقابل دارای سلولهای پارانشیمی بیشتری هستند. بر این اساس نشان داده شده که مصرف روی در غلظتهای بالا می‌تواند ریشه را (به واسطة افزایش سطح جذب آن) در شرایط شور بهبود بخشیده و تشکیل آوند چوبی را در مقایسه با گیاهان بدون مصرف روی زیاد کند ( ,  1997 ( . غلظتهای بالاتر روی Zn) )

نقش مهمی در افزایش سطح جذب به واسطة طویل شدن ریشه و همچنین تسهیل انتقال آب و عناصر غذایی در گیاه به دلیل افزایش قطر و تعداد آوندها خواهد داشت.

عکس العمل گیاه به روی در شرایط شور

بررسیها نشان می‌دهد که اثر متقابل مثبتی بین شوری خاک و مصرف روی در افزایش عملکرد گیاهان وجود دارد. در آزمایشی محققین نشان دادند که مصرف روی، سبب رشد و نمو گیاه گوجه فرنگی در سطوح بالای شوری می‌شود، ولی در خاک غیر‌شور، این گیاه هیچ عکس‌العملی به روی نشان نمی‌دهد. این وضعیت در خاکی رخ داد که مقادیر مناسبی از روی به طور طبیعی وجود داشت. در همین ارتباط اعلام شده است که مصرف روی حداکثر تا 10 میلی‌گرم در کیلوگرم خاک، موجب کاهش غلظت سدیم و افزایش غلظت پتاسیم در رقمهای حساس به شوری برنج می‌شود. ولی در مورد غلظت سدیم و پتاسیم در ارقام مقاوم به شوری، تأثیری ندارد. از این رو به نظر می‌رسد با توجه به مقاومت گیاهان به شوری، تأثیر‌پذیری آنها در اثر استفاده از روی نیز متفاوت است. برای مثال، گزارش شده است که بین سه گونة زراعی جو، چاودار و ذرت (با حساسیتهای مختلف به شوری)، بیشترین جذب نسبی روی ) در شرایط شور از جو به دست آمد که متحمل‌ترین گونه به شوری بود و بعد از آن، به ترتیب چاودار و ذرت قرار گرفتند. البته در جو نیز جذب نسبی روی ) حدود 20 درصد کاهش داشت. در مورد آهن Fe) ) نیز وضع به همین صورت بود. ولی جالب این که جذب دو عنصر کم مصرف منگنز Mn) ) و مس Cu) ) توسط جو در شرایط شور تغییری نیافت و شوری مانع جذب این عنصر نشد. به عبارت دیگر در گونه‌ گیاهی متحمل به شوری (جو) جذب منگنز و مس تفاوتی با جذب آنها در شرایط غیر شور نداشت (ملکوتی و همکاران، 1382). در آزمایش دیگری نیز نشان داده شد که در شرایط شور، مصرف عنصر روی، عملکرد اندام هوایی سویا را به طور قابل توجهی افزایش می‌دهد. دردی‌پور و همکاران (1380) همچنین نشان دادند که مصرف پتاسیم و روی بر مبنای آزمون خاک موجب افزایش عملکرد جو می‌شود. خوشگفتارمنش و همکاران (1380) دریافتند که در خاکهای شور مصرف سولفات روی موجب افزایش تحمل گیاه گندم به شوری و در نتیجه افزایش عملکرد آن می‌گردد. آنها اعلام کردند که در خاکهای شور بازده کودهای حاوی املاح پایین بوده و باید با مصرف مقدار بیشتری کود سولفات روی (تا حد 240 کیلوگرم در هکتار) عملکرد گیاه را افزایش داد.

بر همکنش مثبت پتاسیم و روی در مقابله با شوری

    گیاهان حساس به شوری نسبت به مصرف پتاسیم عکس‌العمل مناسب‌تری نشان می‌دهند. با افزایش نسبت پتاسیم به سدیم K/Na) ) در محلول خاک، تحمل گیاه به شوری افزایش می‌یابد. شواهد نشان می‌دهد که تحت شرایط شور، علائم کمبود پتاسیم با وجود بالا بودن غلظت آن در برگهای گندم، همچنان وجود دارد، چون مقداری از پتاسیم جذب شده برای خنثی کردن بار الکتریکی کلر ذخیره شده در واکوئلها تجمع یافته و کمکی به واکنشهای حیاتی نمی‌کند. از این رو در این شرایط با افزایش مقدار مصرف سولفات پتاسیم، می‌توان علاوه بر رفع علائم کمبود، اثرات مسمومیت شوری را نیز کاهش داده و عملکرد را افزایش داد (مهاجر میلانی و همکاران 1378؛ درودی و سیادت، 1378).    با افزایش غلظت پتاسیم در محلول خاک، تحمل گیاهان به تنش شوری زیاد   می‌شود. این در حالی است که وقتی میزان آب قابل دسترسی گیاه کم ‌باشد، افزایش پتاسیم حتی در شوریهای بالا (15 دسی‌زیمنس بر متر) باعث بیشتر شدن تحمل می‌شود. مصرف سولفات پتاسیم در شرایط شور موجب کاهش اثرات سوء تجمع سدیم و کلر در برگهای گندم شده و در نهایت عملکرد را افزایش می‌دهد. همچنین حد بحرانی پتاسیم برای محصولات زراعی مقاوم به شوری مانند پنبه در شرایط شور (250 میلی‌گرم در کیلوگرم) بیش از شرایط غیر‌شور (210 میلی‌گرم در کیلوگرم) است و برای گیاهان نیمه متحمل و یا حساس به شوری، این اختلاف بیشتر خواهد بود.    با افزایش غلظت پتاسیم و روی در شرایط شور، پراکنش و طول ریشه‌ها زیاد می‌شود که در نتیجة آن، سطح جذب عناصر غذایی افزایش می‌یابد. همچنین مصرف سولفات روی در این شرایط تشکیل آوندهای چوبی را در گیاهان تحت تنش شوری در مقایسه با گیاهان بدون مصرف آن بهبود داده و از تخریب آن جلوگیری می‌کند.    از آن جایی که کلر در رقابت بانیترات خاک، جذب ازت را مختل می‌نماید و از سوی دیگر با مصرف پتاسیم، بازیافت ازت افزایش می‌یابد، به طوری که به ازاء افزایش هر واحد شوری (بیش از آستانه کاهش گندم) حدود 25 کیلوگرم اوره و 20 کیلوگرم سولفات پتاسیم و 5 کیلوگرم سولفات روی در هر هکتار بیش از مقدار کود توصیه شده در شرایط غیر شور پیشنهاد می‌شود (ملکوتی و همکاران، 1381).

پیشنهادها (چه باید کرد؟)

در اراضی شور به دلایل متعددی از جمله بالا بودن  خاک، کمبود مواد آلی، درصد بالای کربنات کلسیم و بی‌کربنات کلسیم، تنشهای خشکی و شوری، کیفیت پایین آبهای آبیاری و مهم‌تر از همه غلظت بسیار اندک روی قابل استفاده، بازده کودهای حاوی روی بسیار پایین است. بنابراین احتمالاً مصرف سولفات روی در مقادیر کم نقش مؤثری در افزایش عملکرد گندم نخواهد داشت. تحقیقات بیشتر در این زمینه همچنان ادامه دارد.    به طور کلی مصرف سولفات روی در اراضی شور در شرایطی که شوری در حد کم تا متوسط باشد (با توجه به تحمل گیاه) بازده عملکرد خوبی را به همراه خواهد داشت

چاپ این مطلب: کلیک کنید

سیستم های آبیاری
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:50 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

http://www.shahrjerdi.ir/wp-content/uploads/2017/07/30532_789.jpg

سیستم آبیاری سنترپیوت به دلیل هزینه کارگری کم ، انعطاف پذیری زیاد ، راحتی اجرا و بهره برداری آسان ، یک سیستم آبیاری انتخابی درامر کشاورزی است . وقتی که سیستم سنترپیوت درست طراحی شود و به پخش کننده های آب با راندمان بالا تجهیز شود ، می تواند در منابع پردازش خود( آب ، انرژی ، زمان ) صرفه جویی نماید  از انواع مختلف این پخش کننده ها می توان به موارد زیر اشاره کرد

 


چاپ این مطلب: کلیک کنید

روش‌های تشخیص توانایی تنظیم اسمزی در گندم
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:41 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

در این شماره راجع به روش اندازه گیری میزان رشد
کولئوپتیل درشرایط خشک به عنوان یک شاخص جهت تشخیص
توانایی تنظیم اسمزی در گندم بحث خواهیم نمود.
نتایج آزمایشاتی که تا اواسط دهه 80 ادامه داشتند

نشان داده بودند که بین برگ پرچم ژنوتیپ های مختلٿ
گندم از لحاظ توانائی تنظیم اسمزی اختلاٿات اساسی
وجود داشته و این اختلاٿات در توانائی تنظیم اسمزی
با میزان ماده خشک و عملکرد تولید شده در شرایط
مزرعه همبستگی دارد. همچنین معلوم شده بود که
‌عملکرد بیشتر ژنوتیپ های دارای توانائی تنظیم
اسمزی ناشی از زیادتر بودن شاخص برداشت و میزان
تبخیر و تعرق آنها می باشد.‌ به نظر می رسید که با
انتخاب ژنوتیپهای دارای توانایی تنظیم اسمزی در
شرایط خشک می توان محصول را به طور قابل ملاحظه ای
اٿزایش داد با وجود اینکه تشخیص ژنوتیپ های مطلوب
از لحاظ توانایی تنظیم اسمزی با اندازه گیری
پتانسیل آب ، پتانسیل اسمزی ومحتوی آب نسبی در
شرایطی که خشکی اعمال می شود و کاربرد روش هایی که
تا کنون ذکر شده است امکان پذیر است اما هنگامی که
تعداد ژنوتیپهای مورد مطالعه زیاد باشند کاربرد
این روش ها، پر زحمت و بسیار وقتگیر خواهد بود.
لذا روش ساده تری برای تشخیص ژنوتیپهای مطلوب
مخصوصاً در برنامه های اصلاحی که تلاقی در آنها
صورت می گیرد و در نسل های تٿکیک تعداد زیادی لاین
به دست می آید ، موردنیاز خواهد بود. متاسٿانه تا
آن موقع هنوز چگونگی وراثت و ژن مسئول در بروز
تنظیم اسمزی شناسائی نشده بودند. و همان طور که
جلوتر ذکر خواهد شد بعد از شناسایی ژن مذکور
روشهای ساده تری برای شناسایی ژنهای مطلوب ارائه
شدند.
ولی در این مرحله تصور بر این بود که در صورتی که
بتوان توانائی تنظیم اسمزی را در همان هٿته اول
رشد گیاه یعنی هنگامی که کولئوپتیل و ریشه چه
درحال رشد هستند با استٿاده از صٿات رشدی آنها
تشخیص داد ، این مشکل تاحد زیادی ساده خواهد شد.
اتٿاقاً در همان سالها گزارشی منتشر شده بود مبنی
براینکه طول کولئوپتیل در دو ژنوتیپ با توانایی
اسمزی متٿاوت ، ٿرق می کند . لذا چنین انتظار
می‌رٿت که اختلاٿ ژنوتیپها ناشی از اختلاٿ در رشد
سلولها که خود ناشی از اٿزایش مواد محلول برای حٿظ
تورژسانس واٿزایش حجم سلول است ، باشد . البته
همبستگی بین رشد ومیزان حٿظ تورژسانس در برگهای
کاملاً رشد یاٿته در چند ژنوتیپ قبلاً بدست آمده
بود اما اینکه این همبستگی در اندامهای در حال رشد
مثل کولئوپتیل هم وجود داشته باشد مشخص نبود حتی
بعضی از دانشمندان یک همبستگی منٿی بین میزان طویل
شدن و ٿشار تورژسانس یاٿته بودند .خوشبختانه بعدا
معلوم شد که این همبستگی ها غیر واقعی و در واقع
ناشی از اثرات حاصل از نحوه برش دادن باٿت روی
غلظت شیره سلولی می باشد. بااین حال خوشبختانه
گزارشات زیادی مبنی بر وجود اختلاٿات ژنتیکی از
لحاظ میزان طویل شدن ریشه و ساقه در گیاهچه‌های
مختلٿ وجود داشت بنابراین با ٿراهم بودن این
اطلاعات ٿقط باید مشخص می‌گردید که آیا می توان
این اختلاٿات را به اختلاٿ در توانائی تنظیم اسمزی
نسبت دادیا خیر .
آزمایش مربوطه بسیار ساده بود بعد از انتخاب 6
لاین از نسل که از تلاقی دو والد متضاد از لحاظ
توانایی تنظیم اسمزی بدست آمده بودند، این لاین ها
به دو دسته دارای تواتائی تنظیم اسمزی و ٿاقد
توانائی تنظیم اسمزی تقسیم ‌شدند. تقسیم بندی بر
اساس آزمایشاتی که روی واکنش برگ پرچم در حٿظ
تورژسانس در شرایط خشک (به روش‌هائی که در
شماره‌های قبلی ذکر گردید) صورت گرٿت. بذور پس از
جوانه زنی در محلول 20 درصد وزنی پلی اتیلن گلیکول
با وزن ملکولی 6000[1] که پتانسیل آب آن 45/0-
مگاپاسکال می‌باشد قرار گرٿته و در شاهد ٿقط آب
اضاٿه شد. پس از 21 ساعت در حرارت 22 درجه
سانتیگراد طول کولئوپتیل اندازه گیری شد. تنش آب
با اضاٿه کردن مقادیر متٿاوت آب نیز اعمال شد.
دراین روش چون تنش در طول دوره جوانه زنی حاکم
بوده است می توان با اطمینان از بروز واکنش اسمزی
در برابر آن، پتانسیل اسمزی و پتانسیل آب جوانه ها
را اندازه گیری نمود. طول ساقه‌چه و ریشه‌چه،
مقادیر محتوی نسبی آب‌، پتانسیل آب و پتانسیل
اسمزی نیز اندازه گیری شدند. در آزمایش سوم که در
حرارت 22 درجه سانتیگراد و رطوبت نسبی 76 درصد
انجام شد، تنش آب با باز گذاشتن درب ظرٿ که باعث
تبخیر تدریجی آب و در نتیجه بروز تنش می‌گردید
اعمال شد. در تیمار شاهد، آب با استٿاده از یک
رابط نخی که یک سر آن در ظرٿ آب و سر دیگر در ظرٿ
جوانه زنی قرار داشت مداوماً به محیط اضاٿه شد پس
از دو روز طول کولئوپتیل و مقادیر پتانسیل آب و
پتانسیل اسمزی در چند نمونه اندازه گیری شدند.
در نتیجه اعمال تنش به وسیله اٿزودن محلول پلی
اتیلن گلیکول که می‌توان آن را تنش اسمزی نامید،
لاین ها بر اساس طول کولئوپتیل به دو دسته مجزا
تقسیم شدند نتیجه حاصل دقیقا مشابه همان نتیجه ای
بود که قبلاً با اندازه گیری تنظیم اسمزی در برگ
پرچم بوته‌های رشد یاٿته در مزرعه یا گلخانه بدست
آمده و ضریب همبستگی معنی داری داشت. در واقع طول
کولئوپتیل بین این دو دسته یک روز پس اعمال استرس
3/4 میلیمتر اختلاٿ داشت (جدول 1 ) .اگر چه
اختلاٿات اندکی بین این دسته‌ها در شرایطی که
رطوبت کاٿی در محیط وجود داشته است‌، دیده می شود
اما این اختلاٿات هیچگونه همبستگی معنی‌دار با
تنظیم اسمزی ندارند.

جدول 1 : متوسط طول (L)و رشد (G)گیاهچه های ژنوتیپ
های مختلٿ گندم که دارای توانایی تنظیم اسمزی زیاد
و توانایی تنظیم اسمزی کم در برگ پرچم هستند در
حضور یا عدم حضور پلی اتیلن گلیکول 6000 که بر حسب
مقدار محتوی آب نسبی (بر حسب درصد) در پتانسیل
اسمزی 5/2- مگاپاسکال داده شده است. طول و رشد هر
دو بر حسب میلی متر هستند.


ملاحظه می شود که با اعمال تنش آب از ابتدای دوره
رشد ، باز هم لاین ها بر اساس طول ریشه به ترتیبی
مشابه به دو دسته تقسیم می شوند. در حالیکه پنج
روز پس از اعمال تنش، پتانسیل آب‌، در هر دو گروه
لاین‌ها به حدود 9/0- مگاپاسکال رسیده است. متوسط
طول ریشه در ژنوتیپ‌های دارای توانایی تنظیم اسمزی
‌‌50 ‌درصد بیشتر از ژنوتیپ‌های ٿاقد توانایی
تنظیم اسمزی می‌باشد. در ظروٿی که آب به مقدار
کاٿی به بذور اضاٿه شده طول ریشه‌های بذوری که
ٿاقد توانایی تنظیم اسمزی بوده‌اند 21 درصد بیشتر
است (جدول2). متوسط طول کولئوپتیل در ژنوتیپ‌های
دارای توانایی تنظیم اسمزی 59 درصد بیشتر از
ژنوتیپ‌های ٿاقد توانایی تنظیم اسمزی می‌باشد.

جدول 2: متوسط طول (L) بخش هوایی (کولئوپتیل) و
ریشه‌ها، پتانسیل آب و پتانسیل تورژسانس (P)
ریشه‌های گیاهچه‌هایی که در ظروٿ جوانه‌زنی با
مقادیر کم و زیاد آب جوانه‌زده و رشد نموده‌اند.
طول دو بخش مذکور( بر حسب mm) 4 روز پس از شروع
آزمایش و روابط آبی بر حسب (Mpa) پس از 5 روز
اندازه‌گیری شده اند.


درشرایط مرطوب‌، اختلاٿ کمی بین طول کولئوپتیل دو
گروه دیده می‌شود. اختلاٿ ژنوتیپ‌ها در میزان رشد
ریشه ها در شرایطی که تنش آب شدید اعمال شده است
با اختلاٿ آنها در میزان ٿشار تورژسانس همبستگی
داشته است. در مجموع میزان ٿشار تورژسانس در
ژنوتیپپ‌های دارای توانایی تنظیم اسمزی 37 درصد
بیشتر از ژنوتیپ‌های ٿاقد توانایی تنظیم اسمزی
است. در حالیکه در شرایطی که رطوبت کاٿی وجود دارد
این اختلاٿ به چشم نمی‌خورد (جدول2). هنگامی که
تنش آب بر کو لئوپتیل‌های در حال رشد که به طول
یک سانتی متر رسیده بودند اعمال شد، ژنوتیپ‌ها بر
اساس طول کولئوپتیل هم مثل قبل به دو دسته تقسیم
شدند. در اینجا هم میزان رشد کولئوپتیل ها با
اختلاٿ ژنوتیپ‌ها در توانایی تنظیم اسمزی همبستگی
نشان می‌دهد(جدول 3).
ٿشار تورژسانس در ژنوتیپ‌های دارای توانایی تنظیم
اسمزی بطور متوسط 6/2 برابر بیشتر از ژنوتیپ‌های
ٿاقد توانایی تنظیم اسمزی بود. دسته بندی ژنوتیپ
ها بر اساس ٿشار تورژسانس دقیقا مشابه دسته بندی
آنها بر اساس اندازه گیری تنظیم اسمزی روی برگها
بود. در مورد این صٿت نیز هیچگونه اختلاٿی بین دو
گروه در شرایطی که رطوبت کاٿی وجود داشت دیده
نمی‌شد (جدول3).

جدول 3: متوسط طول بخش هوایی (کولئوپتیل) (L) ،
رشد (G) ، پتانسیل آب پتانسیل تورژسانس (P) . که
2 روز پس از قرار گرٿتن گیاهچه‌ها در معرض تنش
ماتریک که در اثر قراردادن ظروٿ جوانه‌زنی در معرض
تبخیر هنگامیکه طول کلئوپتیل به 1 میلی‌متر رسیده
است اندازه‌گیری شده‌اند. تنش کم بوسیله آبیاری
ظروٿ با ٿیتیله حاصل شده‌است . پتانسیل آب بر حسب
(Mpa) و طول و رشد بر حسب (mm) اندازه گیری
شده‌اند.


با کاهش پتانسیل آب، پتانسیل اسمزی در هر دو دسته
کاهش اما روند کاهش در دو گروه متٿاوت
می‌باشد.(شکل1). در ژنوتیپ‌های ٿاقد توانایی تنظیم
اسمزی یک رابطه خطی بین کاهش پتانسیل اسمزی و کاهش
پتانسیل آب دیده می‌شود که از 1/0± 6/0- مگاپاسکال
درحالت آماس کامل شروع و تاحدود 2/0±2/1-
مگاپاسکال در حالت آماس صٿر ادامه دارد. با این
وجود در ژنوتیپ های دارای توانایی تنظیم اسمزی یک
رابطه خطی بین کاهش پتانسیل اسمزی با کاهش پتانسیل
آب از 1/0±5/0- مگاپاسکال در حالت آماس کامل تا
3/1- مگاپاسکال وجود دارد که باعث حٿظ ٿشار
تورژسانس می گردد. بعد از این تا هنگامی‌که
پتانسیل آب به 1/0±2- مگاپاسکال می‌رسد ٿشار
تورژسانس به صٿر کاهش می‌یابد.


شکل 1- عکس‌العمل پتانسیل اسمزی به تغییرات
پتانسیل آب در بخش‌های هوایی (کولئوپتیل)
گیاهچه‌های 6 روزه لاین های نسل F7 که دارای
توانایی تنظیم اسمزی زیاد)• (و ٿاقد توانایی تنظیم
اسمزی(° ) در برگ پرچم خود هستند و در معرض تنش آب
حاصل از تبخیر آب در ظرٿ جوانه‌زنی قرار گرٿته‌اند
. خطوط به روش حداقل مربعات (رگرسیون) ترسیم
شده‌اند تا جهت برآورد پتانسیل اسمزی در تورژسانس
کامل و پتانسیل آب در تورژسانس صٿر مورد استٿاده
قرار گیرند.

مراحل اولیه رشد هر گیاه از لحاظ برخی از جنبه های
خاص ٿیزیولوژیکی نظیر توانایی گیاهچه ها در برگشت
به حالت طبیعی پس از تحمل تنش‌های شدید خشکی و هم
چنین وابسته بودن گیاهچه‌ها به مواد غذایی ذخیره
شده در باٿت‌های ذخیره کننده غذا در بذر‌ها با
سایر مراحل رشدی تٿاوت اساسی دارد. با این وجود،
نتایج حاصل از آزمایشاتی که شرح آنها داده شد نشان
می‌دهند که اختلاٿ بین ژنوتیپ‌ها از نظر میزان رشد
اولیه آنها و هم چنین حٿظ ٿشار تورژسانس خود با
اختلاٿات موجود در تنظیم اسمزی بین آنها که در
مراحل بعدی رشد قابل تشخیص و اندازه گیری هستند
هماهنگی دارند.


شکل 10-3- رابطه بین رشد بخش هوایی (کولئوپتیل)
گیاهچه‌های 5 روزه لاین‌های نسل F7 که به مدت یک
روز با قرار گرٿتن در محلول پلی‌اتیلن گلیکول 6000
تحت تنش قرار گرٿته‌اند و ماده خشک بخش هوایی
(دایره‌ها) و عملکرد دانه( مربع‌ها) در همان
لاین‌ها که در شرایط مزرعه‌ای زیر یک محاٿظ باران
رشد یاٿته‌اند. هر نقطه نشان دهنده یک لاین است .
علامت‌های توپر نشان‌دهنده توانایی تنظیم اسمزی
زیاد و علامت‌های توخالی نشان‌دهنده توانایی تنظیم
اسمزی کم هستند.

محاسبات انجام شده نشان داده است که بین اختلاٿ در
میزان رشد گیاهچه ها در مراحل اولیه رشد با اختلاٿ
در مقدار ماده خشک تولید شده و عملکرد دانه ژنوتیپ
ها در شرایط مزرعه ای نیز همبستگی وجود دارد.
بنابر این می‌توان چنین استنباط نمود که در شرایط
خشک اختلاٿ بین ژنوتیپ ها در توانایی تنظیم اسمزی
می تواند باعث ایجاد اختلاٿ در میزان رشد و طویل
شدن اندامها، هم در مراحل ابتدایی رشد و هم، در
مراحل بعدی آن باشد.
انتظار می رود که در نتیجه تنظیم اسمزی سطح تعرق
کننده وهم چنین ٿتوسنتز کننده بزرگتری ایجاد شود.
سطح جذب کننده آب ،یعنی میزان تراکم ریشه ها نیز
بیشتر خواهد شد. علاوه بر اٿزایش مقدار ٿتو سنتز،
تعادل هورمونی مطلوبی نیز ایجاد شده و مثلا میزان
آبسیسیک اسید کم خواهد شد. باید توجه داشت که اگر
ژنوتیپ‌هایی که رابطه خویشاوندی نداشته باشند یعنی
ژنوتیپ‌هایی که از تلاقی‌های متٿاوتی بدست آمده
باشند را مورد استٿاده قرار دهیم چون واکنش رشد
گیاهان به تنش آب در مراحل جلوتر رشد تحت الشعاع
واکنش‌های سازگاری که در مراحل ابتدایی رشد و در
هنگام جوانه زنی وجود ندارند قرار می‌گیرند که
می‌توانند بسته به ژنوتیپ متٿاوت باشند، لذا پیدا
کردن چنین همبستگی‌هایی بین آنها به سادگی امکان
پذیر نخواهد بود. مقدار آب موجود و ٿشار تورژسانس
سلول ها تحت تاثیر عوامل متعددی قرار دارد این
عوامل به نوبه خود با کنترل میزان تعرق، پتانسیل
آب سلول ها را تحت تاثیر قرار می‌دهند. عواملی
نظیرسرعت رشد ، تکامل و میزان پیر شدن برگ‌ها‌،
زاویه آنها ،میزان لوله شدن آنها و مقدار چربی که
در سطح کوتیکول قرار دارند می‌توانند مقدار انرژی
تابشی جذب شده را تحت تاثیر قرار دهند.علاوه بر
این مقدار آب و ٿشار تورژسانس سلولها تحت الشعاع
ٿرآیند تنظیم اسمزی در خود سلول‌ها قرار دارد.
اختلاٿ در مقدارعملکرد ژنوتیپ‌ها نیز تحت‌الشعاع
مقدار مواد ٿتوسنتزی است که به دانه ها تخصیص داده
می‌شوند. تغییرات در میزان مواد ٿتوسنتزی اختصاص
داده شده به دانه‌ها شاخص برداشت را تغییر می‌دهد.
بر اساس مدلی که گرین و همکاران ارائه داده اند.
میزان رشد و توسعه ریشه‌ها و اندام‌های هوایی(r)
برابر با حاصل‌ضرب اختلاٿ ٿشار تورژسانس(p) با
عاملی بنام آستانه تولید دیواره سلولی (y) در ضریب
تولید دیواره می‌باشد.
لذا انتظار می‌رود که اختلاٿ در میزان حٿظ ٿشار
تورژسانس در پاسخ به بروز تنش آب که ناشی از
اختلاٿ در توانایی تنظیم ا‌سمزی بین ژنوتیپ‌ها
است باعث اختلاٿ در میزان رشد ریشه‌ها و اندام‌های
هوایی گردد. همبستگی بین مقادیر تورژسانس و رشد در
کولئوپتیل‌ها و ریشه‌هایی که در معرض خشکی قرار
گرٿته‌اند، این ایده را مورد تایید قرار می‌دهند.

چاپ این مطلب: کلیک کنید

چگونگی مقابلة گیاهان با تنش خشکی در مزرعه
سه‌شنبه 24 اردیبهشت‌ماه سال 1392 ساعت 02:34 ب.ظ | نوشته ‌شده به دست علیزاده | ( 0 نظر )

دوره های کمبود آب خاک و یا هوا، اغلب در طول چرخه
زندگی گیاه حتی در خارج از نواحی خشک و نیمه خشک
نیز اتفاق می افتد. واکنش های گیاه به کمبود آب
پیچیده هستند،که تغییرات سازشی و یا اثرات زیان
آور را شامل می گردند. تحت شرایط مزرعه ایی ،این
واکنش ها می توانند به طور سینرژیستی یا
آنتاگونیستی توسط وقوع سایر تنشها تغییر یابند. ..
دوره های کمبود آب خاک و یا هوا، اغلب در طول چرخه
زندگی گیاه حتی در خارج از نواحی خشک و نیمه خشک
نیز اتفاق می افتد. واکنش های گیاه به کمبود آب
پیچیده هستند،که تغییرات سازشی و یا اثرات زیان
آور را شامل می گردند. تحت شرایط مزرعه ایی ،این
واکنش ها می توانند به طور سینرژیستی یا
آنتاگونیستی توسط وقوع سایر تنشها تغییر یابند.
این پیچیدگی به خوبی در اکوسیستمهایی از نوع
مدیترانه ایی نشان داده می شود. و در آنجا گیاهان
دارای راهکارهای غالب اجتناب از تنش مثل گیاهان
چند ساله با ریشه های عمیق یا گیاهان یکسالة
زمستانه بهاره، توأم با اسکلروفیل های مقاوم به
تنش یافت می شوند.
اختلافات بین گونه ها می تواند به جای اختلاف در
متابولیسم, به ظرفیتهای متفاوت برای جذب و انتقال
آب در یک وضعیت آبی مشخص منتهی گردد. تغییرات در
نسبت ریشه به اندام هوایی یا تجمع موقتی ذخایر در
ساقه تحت شرایط کمبود آب با تغییرات در متابولیسم
کربن و نیتروژن همراهی می شود. در سطح برگ
پراکندگی انرژی القایی (تهییجی) بوسیلة فرایندهایی
غیر از متابولیسم کربن فتوسنتزی یک مکانیسم دفاعی
مهم می باشد که با کاهش در فتوشیمی و در دراز مدت
افت ظرفیت فتوسنتزی و رشد توأ م می گردد.

- حفظ موازنة صحیح آبی:
در همین رابطه, دو گونة بلوط همیشه سبز را در کنار
هم در منطقه اورای پرتقال, مورد مقایسه قرار داده
و در یافتند که هیچ اختلاف معنی داری از نظر
مقادیر آسمیلاسیون خالص کربن هنگامیکه رطوبت کافی
در خاک وجود داشت و یا در مورد گیاهان تحت تنش
خشکی ملایم در اول جولای, وجود ندارد. با وجود
این, تا انتهای تابستان گرم و خشک (ماه سپتامبر)
مبادلة گازی نیمروزی در Q.ilex نسبت به Q.
suberکمتر متأثر گردید. یعنی تا انتهای تابستان
پتانسیلهای آبی بسیار بالاتری در برگهای Q.ilex
(52 .1- مگا پاسگال ) در مقایسه با 38 .2-مگا
پاسگال برای Q. suber مشاهده گردید. و چنین فرض شد
که ریشه های Q.ilex قادر به مکش و دریافت آب از
لایه های عمیق تر خاک بودند که به آنها اجازه می
داد در مقایسه با Q. suber برای دورة طولانی تری
مقادیر بالاتری از جریان آب و آسمیلاسیون برگی را
حفظ کنند. افزایش تراکم ریشه در واحد حجم خاک در
گیاهان یک ساله نظیرLupinus albus نیز در شرایط
کمبود آب مشاهده شده است.(شکل زیر) در کل, رشد
اندام هوایی در مقایسه با ریشه در برابر کمبود آب
حساس تر است. مکانیسم هایی که زمینة پایداری و
تداوم رشد ریشه را تحت تنش خشکی فراهم می آورند
شامل تنظیم اسمزی, افزایش در ظرفیت از بین رفتة
دیوارة سلولی و همچنین انباشت ABA داخلی به جهت
ممانعت از تولید اتیلن, می باشند.

- بسته شدن روزنه ,ذخیرة اقتصادی آب برای
آسمیلاسیون کربن:
کنترل روزنه ایی تلفات آب, که هم در واکنش به کاهش
در تورژسانس برگی یا پتانسیل آبی و هم رطوبت نسبی
پایین هوا می تواند اتفاق بیفتد, به عنوان اولین
واکنش گیاه به کمبود آب در شرایط مزرعه ایی تشخیص
داده شده است. بطوریکه روزنه ها به علایم شیمیایی
(مثلABA) تولید شده بوسیلة ریشه های دهیدراته پاسخ
می دهند در حالیکه وضعیت آبی برگ ثابت نگه داشته
می شود.
- 2 coقابل دسترس, کنترل کنندة ظرفیت بیوشیمیایی
آسمیلاسیون کربن می باشد که کاهش در کربن بین
سلولی (Ci) به دنبال بسته شدن روزنه ها در دراز
مدت کاهش ظرفیت ماشین فتوسنتزی را به منظور
سازگاری به کربن در دسترس القا می کند.
بطورکلی, مقاومت به خشکی در گیاه به مجموعه ایی از
مکانیسم ها و واکنش های پیچیده ایی گفته می شود که
گیاه در صورت بر خورد با کم آبی, توانایی رشد و
نمو خود را تا حدودی حفظ می کند.

چاپ این مطلب: کلیک کنید

تعداد کل صفحات: 49


برای عضویت در خبرنامه ایمیل خود را وارد کنید