سبز نیوز

سبز نیوز

مطالب کاربردی گیاهان زینتی.گیاهان دارویی.کشت قارچ.کشت گلخانه ای.تراریوم و بونسای
سبز نیوز

سبز نیوز

مطالب کاربردی گیاهان زینتی.گیاهان دارویی.کشت قارچ.کشت گلخانه ای.تراریوم و بونسای

نیازهای گیاهان آپارتمانی


نام گیاه: فیکوس بنجامین

نام علمی: Ficus benjamina

روش تکثیر: خوابانیدن هوایی- قلمه

شرایط آبی: تابستان:2 بار در هفته

زمستان: هر 10 روز 1 بار

شرایط نوری: نور غیر مستقیم کافی

شرایط خاک: کمپوست


نام گیاه: کروتون

نام علمی: Codiaeum sp

روش تکثیر: خوابانیدن هوایی- قلمه

شرایط آبی: تابستان:2-3 بار در هفته

زمستان: هر 4 روز 1 بار

شرایط نوری: نور زیاد غیر مستقیم

شرایط خاک: خاک برگ+خاک باغچه+ماسه

نام گیاه: دیفن باخیا

نام علمی: Diffenbachia sp

روش تکثیر: خوابانیدن هوایی- قلمه

شرایط آبی: تابستان:2-3 بار در هفته

زمستان: 1 بار در هفته

شرایط نوری: نور غیر مستقیم

شرایط خاک: خاک برگ+کمپوست+معمولی




نام گیاه: فیتونیا

نام علمی: Fittonia sp

روش تکثیر: قلمه

شرایط آبی: تابستان:2 بار در هفته
 
زمستان: هر 5 روز 1 بار

شرایط نوری:
مقاوم به سایه

شرایط خاک: کمپوست

 

نام گیاه: مارانتا

نام علمی: Maranta sp
 
روش تکثیر: تقسیم ساقه زیرزمینی در بهار

شرایط آبی: تابستان:2-3 بار در هفته

زمستان: هر 10 روز 1 بار

شرایط نوری: نور غیر مستقیم

شرایط خاک: کمپوست+خاک کاملا سبک
 
 
 
 
نام گیاه: کوردیلین

نام علمی: Cordyline sp

روش تکثیر: تقسیم ساقه زیرزمینی
 
شرایط آبی: تابستان: 2 بار در هفته

زمستان: 1 بار در هفته

شرایط نوری: نور غیر مستقیم

شرایط خاک: پیت+خاک لیمونی
 

نام گیاه: بگونیا

نام علمی: Begonia sp

روش تکثیر: قلمه برگ-تقسیم بوته و ریشه

شرایط آبی: تابستان:2 بار در هفته

زمستان: 1 بار در هفته

شرایط نوری: نور زیاد غیر مستقیم

شرایط خاک: کمپوست+شن+پیت
 


نام گیاه: برگ انجیری

نام علمی: Monstra sp

روش تکثیر: ریشه دار کردن قلمه در بهار

شرایط آبی: تابستان:1 بار در هفته
 
زمستان: هر 15 روز 1 بار

شرایط نوری: نور غیر مستقیم-نیم سایه

شرایط خاک: خاک سبک


 

نام گیاه: پوتوس

نام علمی: Scindpsus sp

روش تکثیر: قلمه

شرایط آبی: تابستان:هر 4 روز 1 بار

زمستان: 1 بار در هفته

شرایط نوری: نیم سایه

شرایط خاک: لیمونی
 
 
 
نام گیاه: آگلونما

نام علمی: Aglonema sp

روش تکثیر: پاجوش

شرایط آبی: تابستان: آبیاری کامل

زمستان: 1 بار در هفته
 
شرایط نوری: نور متوسط غیر مستقیم
 
شرایط خاک: هوموسی سبک

فناوری فیزیولوژی گیاهی


یکی از تفاوت‌‌های آشکار بین ما جانوران و خویشاوندان سبز رنگ دورمان، یعنی گیاهان، میزان جنبش و جابه‌جایی ماست. ما پذیرفته‌ایم که هوش را از روی کارها بسنجیم، زیرا کارهایی که انجام می‌دهیم نشان می‌دهند که در مغز ما چه می‌گذرد. بنابراین، چون گیاهان خاموش و بی ‌جنبش به چشم می‌آیند و در یک جا ریشه دوانده‌‌اند، زیاد تیز هوش و زرنگ به نظر نمی‌رسند. اما گیاهان نیز جنبش دارند و به برانگیزاننده‌های پیرامون خود پاسخ می دهند.

گیاهان با حساسیت چشمگیری دست کم 15 متغیر محیطی گوناگون را پیوسته بررسی می‌کنند. آن‌ها می‌توانند این پیام های ورودی را پردازش کنند و با کمک دسته‌ای از مولکول‌ها و راه‌های پیام ‌رسانی، خود را برای پاسخ درست آماده سازند. بنابراین، توان محاسبه‌ گری گیاهان بی‌مغز شاید به اندازه‌ی بسیاری از جانوران با مغزی باشد که می‌شناسسیم.

ساقه‌ی در حال رشد می‌تواند با کمک پرتوهای قرمز دور(مادن قرمز)، نزدیک‌ترین همسایه‌های رقیب خود را حس کند و پیامد کارهای‌ آن‌ها را پیش‌بینی کند و اگر لازم باشد، به شیوه‌ای از رخ‌دادن آن پیامدها پیش‌گیری کند. برای مثال، هنگامی که همسایه‌های رقیب به نخل استیلت (Stilt) نزدیک می شوند همه‌ی گیاه به سادگی جابه‌جا می‌شود. ریزوم برخی گیاهان علفی با رشد کردن به سوی بخش بدون رقیب و یا سرشار از مواد غذایی، جای زندگی خود را بر می‌گزیند. سس که نوعی گیاه انگل است، طی یک یا دو ساعت پس از نخستین برخوردش با گیاه میزبان، توانایی بهره‌برداری از آن را می‌سنجد. خلاصه، گیاهان می‌توانند ببینند، بچشند، لمس کنند، بشنوند و ببویند.

در این مقاله که در دو بخش تنظیم شده است، با گوشه‌هایی از رفتارهای هوشمند گیاهان و سازوکار چگونگی رخ دادن آن‌ها آشنا می‌شویم.

دوری از سایه

ساقه‌ی در حال رشد می‌تواند با کمک نور قرمز دور، نزدیک‌ترین همسایه‌های رقیب خود را حس کند و پیامد کارهای‌ آن‌ها را پیش‌بینی کند و اگر نیاز باشد، به شیوه‌ای از رخ‌دادن آن پیامدها پیش‌گیری کند. این فرایندها را مولکول‌هایی به نام فیتوکروم میانجی‌‌گری می‌کنند. فیتوکروم‌ها، گیرنده‌ها و حسگرهای نور در گیاهان هستند.

هر فیتوکروم از یک بخش دریافت‌کننده‌ی نور و یک بخش دگرگون‌کنند‌ی پیام تشکیل شده است. بخش دریافت‌کننده‌ی نور ساختمان تتراپیرولی دارد و از راه اسید آمینه‌ی سیستئین به بخش دگرگون‌کننده‌ که گونه‌ای پروتئین است، پیوند می‌شود. فیتوکروم در پاسخ به طول موج‌های گوناگون نور، به شکل کارا و ناکارا درمی‌آید. شکل ناکارا (Pr) پس از جذب فوتون‌های قرمز به شکل کارا (Pfr) در می‌آید. Pfr که فوتون‌های قرمز دور (مادون قرمز) را بهتر دریافت می‌کند، در پاسخ به این طول موج‌ها به Pr دگرگونه می‌شود.

ساز و کار فیتوکروم

در نور خورشید، نسبت نور قرمز به قرمز دور نزدیک 2/1 است. اما در یک جامعه‌‌ی گیاهی این اندازه کاهش می‌یابد، زیرا رنگیزه‌های فتوسنتزی، از جمله کلروفیل، نور قرمز را جذب می‌کنند. تغییر در نسبت نور قرمز به مادون قرمز شاخص قابل اطمینانی برای ارزیابی نزدیکی گیاهان رقیب است. در جامعه‌های فشرده پرتوهای قرمز دوری که از برگ‌های گیاهان بازتاب می‌یابند یا پراکنده می‌شوند، پیام روشن و منحصر به فردی است که از نزدیکی رقیبان آگاهی می‌دهد. پس از درک نسبت پا یینی از نور قرمز به قرمز دور، گیاهی که از سایه دوری می‌گزنید (گیاه آ فتاب پسند) بر رشد طولی خود می‌افزاید و اگر ترفنندهایش کارگر افتند، جنبه‌های دیگر پاسخ دوری از سایه باعث شتاب گرفتن گلدهی و تولید پیش از زمان دانه می‌شوند تا بخت ماندگاری افزایش یابد.

دانشمندان در آزمایشی گروهی از گیاهان را زیر فیلتری پرورش دادند که نسبت نور قرمز به قرمز دور را کاهش می‌داد و بنابراین، پاسخ دوری از سایه را بر می ‌انگیخت. این گیاهان نسبت به گیاهانی که زیر نور کامل خورشید می‌روییدند، رشد طولی بیش‌تری پیدا کردند. البته، اندازه‌ی رشد طولی به اندازه‌ی آفتاب‌پسندی گیاه ارتباط دارد. گیاهان صحرایی نسبت به گیاهانی که به طور معمول در سایه‌ی درختان چنگل می‌رونید، رشد طولی بیش‌تری پیدا کردند.

فیتوکروم‌ها اغلب فعالیت پروتئین‌کنیازی را از خو د نشان می‌دهند. این مولکول‌ها با پیوند زدن گروه‌های فسفات به پروتئین ها، فعالیت آن‌ها را تغییر می‌دهند. بر این اساس، آن‌ها با تغییر فعالیت پروتئین‌هایی که در تنظیم ژن‌ها دخالت دارند، بر فعالیت آن‌ها تاثیر می‌گذارند. ژن‌های زیادی در گیاهان شناخته شده‌اند که از راه فیتوکروم در پاسخ به نور تنظیم می‌شوند. البته، فیتوکروم‌ها بخشی از پاسخ‌های زیستی را از راه تغییرهایی در تعادل یون‌ها در سلول پدید می‌آورند.

تکامل فیتوکروم‌ها

توان درک نسبت نور قرمز به قرمز دور، در نهاندانگان رشد چشمگیری پیدا کرده است. سرخس‌ها و خزنده‌ها به طور معمول با واکنش‌های بردباری به سایه، به انبوهی جامعه گیاهی پاسخ می‌دهند. بازدانگان تا اندازه‌ای واکنش‌های دوری از سایه را نشان می‌دهند. شاید تکامل توان شناسایی پیام‌های نوری که از گیاهان پیرامون بازتاب می‌یابد، برای پیشرفت نهاندانگان تا وضعیت کنونی که در فرمانروی گیاهان حرف اول را میزنند، سرنو شت‌ساز بوده است. اگر فیتوکروم ها نبودند هنوز هم گیاهان دوران کربونیفر ما را در بر گرفته بودند.

فیتوکروم‌ها در آغاز در نیاکان پروکاریوتی گیاهان امروزی به وجود آمدند. به نظر می‌رسد در آن‌ها به صورت حسگرهای نور کار می‌کردند. شاید توانایی بی‌نظیر فیتوکروم ‌ها در دگرگونه شدن به شکل‌های کارا و ناکارا در پاسخ به کیفیت نور، در پروکاریوت‌های آغازین اهمیت کارکردی زیادی نداشته است، اما این ویژگی طی تکامل گیاهان خشکی، گزینش و اصلاح شده و به صورت حسگر پیچیده‌ای در آمده است که اهمیت آن با اهمیت بینایی در جانوران برابری می کند. به عبارت دیگر، شاید بتوان فیتوکروم‌ها را چشم‌های گیاهان به شمار آورد.

فرار از سایه

گیاهان برای دوری از چتر سایه‌انداز همسایگان خود، می‌توانند به کارهای چشم‌گیرتری دست بزنند. برای مثال، نخل استیلت (Socratea exorthiza) ساقه‌ای دارد که مانند شخصی که عصا زیر بغل دارد، بر ریشه‌های عصا مانند گیاه تکیه دارد و اغلب نیز به طور مستقیم با زمین تماس ندارد. نام معمولی این گیاه نیز به همین ویژگی اشاره دارد. (واژه استیلت به معنای پایه و تکیه گاه است.) از این رو، این گیاه استوایی را می‌توان نخل پایه‌دار نامید.

هنگامی که همسایگان نخل پایه‌دار بر میزان نور دریافتی گیاه تاثیر می‌گذارند یا به منبع غذایی آن دست ‌درازی می‌کنند، نخل فرار را برقرار تریجح می‌دهد و همه‌ی گیاه به جایی جابه‌جا می شود که بسیار آفتابی است. برای این جابه جایی ریشه های تکیه گاهی جدید به سوی جای آفتابی رشد می‌کنند و ریشه‌های طرف سایه‌انداز شده,،آرام‌آرام می‌میرند. در این رفتار گیاه، به خوبی هدف‌دار کار کردن را می‌بینیم.

در جست و جوی غذا
گیاهان در جست و جوی مواد غذایی می توانند خاک پیرامون خود را ارزیابی کنند و به جاهایی سر بکشند که بهترین چیزها در آن جا یافت می‌شوند. دانشمندان به تازگی برای گیاهان آزمون‌های هوشی را سامان داده‌اند که به کمک آن‌ها می‌توان دریافت گیاهان در کندوکاو پرامون‌شان تا چه اندازه‌ای خردمندانه کار می‌کنند. آنان با کاشتن گیاهان در خاک ناهمگون، یعنی خاکی که قطعه‌های آن از نظر کیفیت مواد غذایی با هم تفاوت دارند، هوش گیاهان را می‌سنجد.

پیچک باغی (Glechoma hederace) توجه گیاه‌شناسان را به خود جلب کرده است. این گیاه همان طور که روی زمین می خزد، در دو بعد رشد می کند. هر جا که مناسب باشد، از ساقه زیر زمینی آن ریشه‌هایی به سوی زمین و ساقه‌هایی به سوی بالا پدید می‌آیند. وقتی گیاه در خاک مرغوبی قرار گیرد، انشعاب و شاخ و برگ بیش‌تری تولید می کند. هم‌چنین، توده‌هایی از ریشه پدید می‌آورد تا با سرعت بیش‌تری از خاک قطعه‌ای که در آن می‌روید، بهره برداری کند. اما هنگامی که این گیاه خزنده در قطعه‌ی فقیرتری قرار می‌گیرد، با سرعت بیش‌تری گسترش خود را به بیرون از آن قطعه‌، پیش می‌برد تا به هر گونه‌ای از آن ‌جا فرار کند. در این حالت، ساقه‌ی زیر زمینی گیاه نازک‌تر است و انعشاب کم‌تری دارد.

این تغییر در الگوی رشد باعث می شود، ساقه‌های هوایی جدید دورتر از گیاه والد شکل گیرند و در محیط تازه‌ای به جست و جوی مواد غذایی بپردازند. البته، میزان رشد فقط با کیفیت مطلق یک قطعه ارتباط ندارد، بلکه میزان مرغوبیت آن در مقایسه با قطعه‌های پیراون نیز برای گیاه مهم است. در واقع، گیاه قطعه‌ای را به عنوان قطعه‌ی مرغوب شناسایی می‌کند که دست کم دو برابر سرشار تر از قطعه‌های پیرامون باشد. اما پیش از این پاسخ‌های هوشمندانه، گیاه باید بتواند کیفیت قطعه‌ای را که در آن می‌روید بسنجد.

دو پژوهشگر انگلیسی ژنی را در گیاه رشادی (Arabidopsis) کشف کرده‌اند که به ریشه‌ها این توانایی را می‌دهند که برای پیدا کردن قطعه‌های سرشار از نیترات و نمک‌های آمونیوم، خاک را بچشد. فراورده‌ی این ژن به ریشه‌ها امکان می‌دهد به جای جست و جوی تصادفی و پر هزینه، به سوی مواد غذایی رشد کنند. این دو پژوهشگر برای شناسایی ژن‌هایی که ممکن است در این کار دخالت داشته باشند، جهش یافته‌های گوناگونی از رشادی را پرورش دادند تا سرانجام جهش یافته‌ای را پیدا کردند که نمی‌توانست با توسعه‌ی ریشه‌های جانبی از ریشه‌های اصلی، به جست و جوی نیترات بپردازد. به این ترتیب آنان ژنی را کشف کردند که برای شناسایی نیترات ضروری است.

چشایی در گیاهان

ریشه‌های گیاهان می‌توانند رفتارهای هوشمندانه‌تری نیز از خود بروز دهند. در دانشگاه تگزاس، استنلی روکس و کولین توماس آنزیمی به نام آپیراز را بر سطح ریشه‌ها کشف کردند که به آن‌ها توانایی می‌دهد در جست و جوی ATP تولید شده از سوی میکروب‌های خاک، قطعه‌های گوناگون خاک را مزه مزه کنند. آپیراز به صورت پروتئینی متصل به غشا تولید می‌شود که بخش دارای فعالیت کاتالیزوری آن به سوی بیرون سلول است. این آنزیم با فعالیت آبکافتی خود فسفات گاما و بتا را از مولکلول ATP یا ADP جدا می کند. گیاهان به کمک این آنزیم بخشی از فسفات معدنی لازم برای رشد خود را به دست می‌آورند. این دو پژوهشگر در آزمایشی نشان دادند، گیاهان تراژنی که مقدار زیادی آپیراز تولید می‌کردند، نسبت به گیاهان دیگر، رشد بیش تری داشتند.

مکنده‌های گیاه سس (Cuscuta) نیز برای غارت بهترین گیاه میزبان از حس چشایی بهره می‌گیرند. این گیاه که توان فتوسنتز کردن ندارد، به گرد ساقه‌های میزبان می پیچد و برای به دست آوردن مواد غذایی و آب، ساختارهای مکنده خود را درون آن‌ها فرو می‌کند. هوش این انگل گیاهی در ارزیابی مقدار انرژی که می‌توان از میزبان به دست آورد و مقدار انرژی که برای بهره برداری از آن باید صرف شود، به کمک گیاه می‌آید.

از لحظه برخورد انگل با گیاه میزبان تا آغاز گرد آوری مواد غذایی از آن، نزدیک 4 روز است. این زمان برای ارزیابی میزان پرباری میزبان و تصمیم گیری برای تولید پیچ‌ های کم تر یا بیش تر به دور آن، کافی است. پیچ‌های بیش‌تر به تولید مکنده‌های بیش‌تر و در نتیجه بهره برداری بیش تر از میزبان می‌انجامند. اما اگر میزبان پربار نباشد تولید پیچ‌های بیش‌تر نوعی هدر دادن انرژی به شمار می ‌آید.

در دهه 1990 کولین کلی نشان داد راهبردهایی که گیاه سس برای جست و جوی بهترین میزبان به کار می‌گیرد، با مدل‌های ریاضی که برای توضیح جنبه‌های اقتصادی جست و جوی غذا در جانوران ابداع شده بودند، هماهنگی دارند. بنابراین، سس ممکن است زرنگ‌ترین شکارچی پیرامون ما نباشد، اما در جست و جوی شکار به خوبی جانورانی که می شناسیم، کار می کند.

لامسه در گیاهان

گیاهان گوشتخوار از جمله گیاه دیونه (Dionea muscipula) با سرعت شگفت‌آوری به برخورد حشره‌ها با کرک‌های حساس روی برگ‌هایشان پاسخ می‌دهند. با واکنش گل قهر (Mimosa pudica) به کوچک‌ترین برخورد آشنا هستید. اما این گیاهان، تنها گیاهانی نیستند که می‌توانند برخورد را درک کنند. آن‌ها نسبت به دیگر گیاهان، فقط لامسه نیرومند‌تری دارند.

گیاهان معمولی برای پاسخ دادن به کشیدهای باد به لامسه نیاز دارند. باد می‌تواند بر میزان شاخ و برگ در گیاهان اثر منفی داشته باشد. از این رو، گیاهان می‌کوشند با تقویت بافت‌های بخش‌هایی که به نوسان در می‌آیند، در برابر باد پایداری کنند. البته، هزینه کردن انرژی برای بافت‌ها ممکن است کشاورزان را نگران کند. در یک آزمایش مشاهده شد وقتی گیاه ذرت هر روز به مدت 30 ثانیه تکان داده شود، میزان محصول تا 30 الی 40 درصد کاهش می‌یابد.

پژوهشگران می‌خواهند بدانند چگونه پیام لمس، بافت‌های محکم‌تری تولید می‌کند. بیش‌تر پژوهش‌های کنونی روی کلسیم متمرکز شده است. هنگامی که گیاهان به سویی کشیده می‌شوند، یون‌های کلسسیم از واکوئل‌ها به درون سیتوزول جریان پیدا می‌کنند. بیرون رفتن این یون‌ها ، که تنها یک دهم ثانیه به درازا می کشد، به فعال شدن ژن‌هایی می‌انجامد که با تقویت دیواره‌ی سلول ارتباط دارند. تاکنون پنج ژن از این ژن‌های لامسه (TCH) شناسایی شده‌اند. یکی از این ژن ها، رمز ساختن پروتئین کالمودولین را در خود دارد که حسگر اصلی کلسیم در گیاهان و جانوران است. در سال 1995 جانت برام چهارمین ژن لامسه (TCH4) را کشف کرد که آنزیمی به نام زیلوگلوکان اندوترانس گیکوزیلاز را رمز می‌دهد. این آنزیم روی دیواره‌ی سلولی گیاهان اثر می‌گذارد و با تغییرهایی که در اجزای اصلی سازنده‌ی آن‌ها پدید می‌آورد، بر قدرت و استحکام آن‌ها می‌افزاید.

منبع: جزیره دانش

تراریوم بسازید

 تراریوم : مجموعه ای از گیاهان سازگار است که در یک ظرف بسته یا حدودا بسته رشد می کنند.

تراریوم در واقع یک باغچه و فضای سبز کوچک درون خانه ی شماست، که شما می توانید به سلیقه ی خودتان در آن کاکتوس و گیاهان گوشتی کشت کنید و یا با کشت بنفشه ی آفریقایی و یا بعضی از انواع سرخس  یک فضای کوچک گرمسیری داشته باشید.. 

ادامه مطلب ...

تاثیر برخی عناصر میکرو بر گیاهان زینتی و علائم کمبود آنها


گلها و گیاهان زینتی به عناصر ماکرو ، و عناصر میکرو نیاز دارند.

عناصر میکرو نقش مهمی در بهبود کیفیت آنها دارد .

 آهن (Fe) : این عنصر مقدمه تشکیل کلروفیل بوده و نقش آن در واکنشهای تنفسی گیاه انکارناپذیر است . همچنین آهن باعث حفظ کیفیت گلهای بریده می شود . یکی از مشخص ترین علائم کمبود آهن ایجاد علائم کلروز بر روی برگهای جوان است ولی رگبرگها سبز باقی می ماند . معمولا برگها کوچک مانده و حتی گلها نیز شفافیت خود را از دست می دهند .

منگنز (Mn) : در فعال کردن سیستم های آنزییمی و واکنشهای اکسیداسیون احیاء نقش داشته و آنزیم ضد اکسین را غیر فعال می کند . در اثر کمبود این عنصر گیاه بد شکل شده ، برگها دچار کلروز می شود و زمانیکه کمبود به حد بحرانی برسد . رشد گیاه متوقف می گردد .

 بر (B) : باعث افزایش گلدهی شده ، نقش مهمی در گرده افشانی ، جوانه زنی و جلوگیری از نفوذ عوامل بیماریزا به داخل گیاه دارد . در صورت کمبود فاصله میان گرهها کم شده ، ساقه نازک می شود ، اندازه برگ کاهش یافته ، گیاه تغییر شکل پیدا کرده ، برگها و گلها خشک می شود .

مس (Cu) : یکی از مهمترین عناصر بوده و ویژگی مس این است که هیچ کاتیونی نمی تواند جایگزین آن شود . همچنین باعث شادابی و طراوت گیاه می گردد . اگر گیاه دچار کمبود مس شود . برگها ظاهری قلاب مانند به خود می گیرد . لبه برگها به طرف مرکز برگ لوله شده و جوانه انتهایی از بین می رود .

کاربرد هورمون جیبرلین



                 Gibberellins 

عملکرد:Active gibberellins show many physiological effects, each depending on the type of gibberellin present as well as the species of plant. gibberellins فعال نشان دادن بسیاری از اثرات فیزیولوژیکی ، هر یک بسته به نوع gibberellin حال حاضر و همچنین گونه از گیاهان است. Some of the physiological processes stimulated by gibberellins are outlined below (Davies, 1995; Mauseth, 1991; Raven, 1992; Salisbury and Ross, 1992). برخی از فرآیندهای فیزیولوژیکی تحریک شده توسط gibberellins زیر را (دیویس ، 1995 ؛ Mauseth ، 1991 ؛ حرص زدن ، 1992 ؛ Salisbury و راس ، 1992) طرح ریزی شده است.

  • Stimulate stem elongation by stimulating cell division and elongation. ساقه رفتن تحریک شده توسط تحریک تقسیم سلولی و ازدیاد طول.
  • Stimulates bolting/flowering in response to long days. bolting Stimulates / گل در پاسخ به روز طولانی است.
  • Breaks seed dormancy in some plants which require stratification or light to induce germination. اشخاصی از خواب دانه در بعضی از گیاهان که نیاز به چینه بندی یا نور آن برای وادار کردن جوانه.
  • Stimulates enzyme production (a-amylase) in germinating cereal grains for mobilization of seed reserves. تولید Stimulates آنزیم (- amylase) در germinating دانه غلات برای بسیج ذخایر دانه.
  • Induces maleness in dioecious flowers (sex expression). موجب القاء maleness در گل دوپایه (بیان جنسی).
  • Can cause parthenocarpic (seedless) fruit development. می تواند باعث parthenocarpic (بی هسته) رشد میوه.
  • Can delay senescence in leaves and citrus fruits. آیا می توانم در پیری برگ و میوه های خانواده مرکبات به تاخیر بیاندازد. 

**مجموعه آموزشی هورمون های گیاهی و نحوه استفاده از آنها + مقالات و کتب معتبر علمی

دانلود فایل

کاربرد هورمون اکسین

Auxin

The following are some of the responses that auxin is known to cause (Davies, 1995; Mauseth, 1991; Raven, 1992; Salisbury and Ross, 1992). در زیر لیست برخی از پاسخ های هورمون گیاهی است ;

  • Stimulates cell elongation تحریک طویل شدن سلول
  • Stimulates cell division in the cambium and, in combination with cytokinins in tissue culture تحریک تقسیم سلولی در محل مبادله ، و در ترکیب با cytokinins در بافت
  • Stimulates differentiation of phloem and xylem Stimulates از تمایز بافت آبکش و xylem
  • Stimulates root initiation on stem cuttings and lateral root development in tissue culture تحریک شروع ریشه در قلمه ساقه و توسعه کناری ریشه در بافت
  • Mediates the tropistic response of bending in response to gravity and light واسطه پاسخ tropistic از خمش در پاسخ به گرانش و نور
  • The auxin supply from the apical bud suppresses growth of lateral buds عرضه هورمون گیاهی از رشد جوانه 
  • Delays leaf senescence تاخیر پیری برگ
  • Can inhibit or promote (via ethylene stimulation) leaf and fruit abscission مهار و یا ترویج (از طریق تحریک اتیلن) برگ و میوه abscission
  • Can induce fruit setting and growth in some plants  تنظیمات میوه و رشد در بعضی از گیاهان را القاء می دهد
  • Involved in assimilate movement toward auxin possibly by an effect on phloem transport در همگون سازی حرکت به سوی هورمون گیاهی احتمالا توسط اثر در حمل و نقل
  • Delays fruit ripening تاخیر رسیدن میوه
  • Promotes flowering in Bromeliads ترویج گل در Bromeliads
  • Stimulates growth of flower parts رشد Stimulates از قطعات گل
  • Promotes (via ethylene production) femaleness in dioecious flowers ترویج (از طریق اتیلن تولید) femaleness در گل دوپایه
  • Stimulates the production of ethylene at high concentrations تحریک تولید اتیلن در غلظت های بالا

Above describes the effect of auxin on strawberry development. در بالا توضیح اثر هورمون گیاهی بر رشد توت فرنگی دارم. The achenes produce auxin. achenes تولید هورمون گیاهی. When removed the strawberry does not develop (Raven, 1992).

**مجموعه آموزشی هورمون های گیاهی و نحوه استفاده از آنها + مقالات و کتب معتبر علمی

دانلود فایل

انواع هورمونهای گیاهی

اکسینها فراوانترین اکسین طبیعی اسید اندول استیک است. مناطقی از گیاه که فعالیتهای رشد و نمو در آنها شدید است معمولا بیشترین مقدار اکسین را تولید می‌کنند. بدین ترتیب مریستمهای مختلف از جمله مریستم نوک ساقه ، مریستم نوک ریشه و کامبیومها سرشار از اکسین هستند. اکسینها علاوه بر تاثیری که در افزایش طول یاخته دارند، در کنترل ریزش پاییزی برگها و میوه‌ها ، جلوگیری از رشد ریشه‌های نابجا ، رشد گل و میوه در بسیاری گیاهان دخالت می‌کنند.


این هورمون به مقدار کم برای رشد ریشه لازم است و افزایش جزئی آن از رشد ریشه جلوگیری می‌کند. اکسین سبب نسخه برداری Rna از Dna و در نتیجه افزایش سنتز پروتئین می‌شود. در بسیاری از دو لپه‌ایها رشد جوانه‌های جانبی به وسیله اکسین متوقف می‌شود. اکسین همچنین در بازدارندگی فعالیت فصلی کامبیوم آوندی و نمو چوب پسین نقش دارد.

جیبرلینها
پژوهشگران ژاپنی هنگام پژوهش بر روی نوعی بیماری قارچی برنج که باعث دراز شدن غیر طبیعی گیاه نورسته می‌شود جیبرلینها را کشف کردند. این قارچ ماده‌ای به نام جیبرلین A را ترشح می‌کند که وقتی آن را روی بوته‌های سالم برنج بپاشند، در آنها هم نشانه چنین بیماری مشاهده می‌شود. جیبرلین A مخلوطی از شش نوع ترکیب شیمیایی کاملا متمایز است. تاکنون در حدود 84 نوع جیبرلین متفاوت بطور طبیعی در گیاهان شناخته شده‌اند. مهمترین اثر جیبرلینها در افزایش طول ساقه‌ها است. جیبرلینها همچنین سبب تمایز یاخته‌ای می‌شوند. در گیاهان چوبی ، جیبرلینها سبب تحریک کامبیوم آوندی جهت تولید آبکش پسین می‌شوند.

جیبرلین بطور کلی تمام جنبه‌های مختلف رشد و نمو در گیاهان از رویش دانه تا تشکیل میوه می‌توانند تحت تاثیر جیبرلینها قرار بگیرند. اثر تحریک کنندگی جیبرلین در رشد ساقه ، بویژه در ساقه‌های گیاهان طوقه‌ای ، با افزایش ابعاد یاخته و تعداد آن آشکار می‌شود. جیبرلینها به مقادیر مختلف در همه بخشهای گیاه وجود دارند. ولی بیشترین مقدار آنها در دانه‌های نارس دیده شده است. بطور کلی رویش دانه در نتیجه تغییر واکنشهای متابولیسمی از صورت کاتابولیسمی به آنابولیسمی حاصل می‌شوند و جیبرلین باعث افزایش فعالیت و یا سنتز گروه ویژه‌ای از آنزیمها می‌گردد که متابولیسم قطعات 2 کربنی را تغییر داده موجبات سنتز ترکیبات حد واسط را فراهم می‌آورد.

سیتوکینینها سیتوکینینها شامل گروهی از ترکیبات محرک رشد هستند که فرآیند تقسیم را در یاخته‌ها تحریک می‌کنند. سیتوکینینها در تمام مراحل رشد گیاهان دارای نقش هستند این ترکیبات بر روی متابولیسم از جمله فعالیت آنزیمها و بیوسنتز مراحل رشد تاثیر می‌گذارند و همچنین در ظهور اندامکها و انتقال مواد غذایی در گیاهان موثر بود و مقاومت گیاه را نسبت به عواملی مانند پیری ، آلودگیهای ویروسی و علفکشها و همچنین دمای پایین افزایش می‌دهند.

سیتوکینینها ابتدا در شیر نارگیل که آندوسپرم مایع است پیدا شدند. اگر به محیط کشت بافت ساقه تنباکو سیتوکینین اضافه شود یاخته‌های غول پیکر بوجود می‌آیند یعنی سیتوکینین باعث بزرگ شدن یاخته‌ها می‌شود. سیتوکینین مصنوعی که بیشتر در تحقیقات بکار می‌رود، کینتین نام دارد. مجموع کینتین و اسید اندول استیک سبب تسریع تقسیم یاخته‌ای و در نتیجه تولید یاخته‌های بیشمار می‌شود. سیتوکینینها در چیرگی راسی (تسلط انتهایی) دخالت دارند با وارد کردن این هورمون در محل جوانه‌ها از رشدشان جلوگیری می‌شود. نقش دیگر سیتوکینینها جلوگیری از پیری برگهاست.

اتیلن اتیلن از لحاظ آن که به حالت گاز است یک هورمون غیر معمولی است. در اوایل قرن نوزدهم ، پرورش دهندگان میوه کوشیدند تا رنگ و طعم مرکبات را با قرار دادن آنها در اتاقی که با بخاری زغال سنگی گرم می‌شد مرغوبتر کنند. مدتها تصور می‌شد که گرما سبب رسیدن میوه می‌شود. سپس پژوهشهای فراوان نشان داد که در حقیقت فرآورده‌های کروسن سبب رسیدن میوه ها می‌شوند. از بین این فرآورده‌ها ، گاز اتیلن ، گاز بسیار فعال تشخیص داده شد. به دنبال آن دانسته شد که اتیلن بوسیله گیاهان هم تولید می‌شود. این گاز قبل از رسیدن میوه‌ها در گیاه تولید می‌شود و مسئول تغییرات رنگ ، بافت و ترکیبات شیمیایی هنگام رسیدن آنهاست.

اکسین در تراکم معین سبب تولید مقدار زیادی اتیلن در گیاه می‌شود. هنگامی که پیری برگ آغاز می‌شود اتیلن تنظیم کننده اصلی ریزش برگ است این گاز سبب تسریع در سنتز آنزیم سلولاز و آزاد شدن آن می‌شود. این آنزیم دیواره‌های یاخته را از بین می‌برد. اگر پیش از آغاز پیری برگ اکسین به آن اضافه شود، از پیری برگ جلوگیری می‌گردد. ولی پس از تشکیل لایه ریزش ، اکسین ریزش برگ را با تحریک تولید اتیلن ، تسریع می‌کند.

 
اسید آبسیسیک
این هورمون سبب خواب گیاه می‌شود. آغشته کردن جوانه‌های رویشی به اسید آبسیسیک آنها را به جوانه‌های زمستانی تبدیل می‌کند. بدین ترتیب که این اسید بیرونی‌ترین برگهای مریستمی را به پولک مبدل می‌سازد. این هورمون در دانه‌های بسیاری از گونه‌های گیاهی وجود دارد و سبب خواب دانه می‌شود. اسید ابسیسیک سبب بسته شدن روزنه‌ها به هنگام کم آبی می‌شود تا از تعرق جلوگیری کند. بدین سبب این هورمون به عنوان محافظ گیاه در مقابل شرایط نامساعد محیطی شناخته شده است.

اسید ابسیسیک همچنین از تاثیر جیبرلین بر تولید جوانه‌ها جلوگیری می‌کند و این بازدارندگی بوسیله سیتوکینین برگشت پذیر است. اسید ابسیسیک علاوه بر تاثیر بر خواب جوانه و دانه و جداشدن برگ و میوه از گیاه بر رشد گیاه و تشکیل گل نیز اثر بازدارنده و یا گاهی محرک دارد. این ماده بر رشد قسمتهای مختلف بسیاری از گیاهان اثر بازدارنده دارد و اثر ترکیبات طبیعی محرک رشد را خنثی می‌کند.
 

**مجموعه آموزشی هورمون های گیاهی و نحوه استفاده از آنها + مقالات و کتب معتبر علمی

دانلود فایل